The European Physical Journal B

, Volume 60, Issue 1, pp 101–109 | Cite as

Correlation and volatility in an Indian stock market: A random matrix approach

Interdisciplinary Physics


We examine the volatility of an Indian stock market in terms of correlation of stocks and quantify the volatility using the random matrix approach. First we discuss trends observed in the pattern of stock prices in the Bombay Stock Exchange for the three-year period 2000–2002. Random matrix analysis is then applied to study the relationship between the coupling of stocks and volatility. The study uses daily returns of 70 stocks for successive time windows of length 85 days for the year 2001. We compare the properties of matrix C of correlations between price fluctuations in time regimes characterized by different volatilities. Our analyses reveal that (i) the largest (deviating) eigenvalue of C correlates highly with the volatility of the index, (ii) there is a shift in the distribution of the components of the eigenvector corresponding to the largest eigenvalue across regimes of different volatilities, (iii) the inverse participation ratio for this eigenvector anti-correlates significantly with the market fluctuations and finally, (iv) this eigenvector of C can be used to set up a Correlation Index, CI whose temporal evolution is significantly correlated with the volatility of the overall market index.


89.65.Gh Economics; econophysics, financial markets, business and management 89.65.-s Social and economic systems 89.75.-k Complex systems 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. L. Bachelier, Theorie de la speculation [Ph.D. thesis in mathematics], Annales Scientifiques de l'École Normale Superieure III-17, 21-86 (1900) Google Scholar
  2. S.N. Kulkarni, Sankhya-The Indian Journal of Statistics 40, Series D (1978) Google Scholar
  3. R.N. Mantegna, H.E. Stanley, An Introduction to Econophysics (Cambridge University Press, 2000) Google Scholar
  4. Y. Liu, P. Gopikrishnan, P. Cizeau, M. Meyer, C.K. Peng, H.E. Stanley, Phys. Rev. E 60, 1390 (1999) CrossRefADSGoogle Scholar
  5. C. Shalen, International Stock Index Spread Opportunities in Volatile Markets, The CBOT Dow Jones Industrial Average Futures and Future Options, 02613 (1999) Google Scholar
  6. S.B. Lee, K.J. Kim, Rev. Financial Econom. 3, 89 (1993) Google Scholar
  7. G.A. Karolygi, R.M. Stulz, J. Finance 51, 951 (1996) CrossRefGoogle Scholar
  8. L. Ramchand, R. Susmel, J. Empirical Finance 5, 397 (1998) CrossRefGoogle Scholar
  9. R. Engle, V.K. Ng, J. Finance, XLVIII, No. 5 (1993) Google Scholar
  10. V. Plerou, P. Gopikrishnan, B. Rosenow, L.A. Amaral, T. Guhr, H.E. Stanley, Phys. Rev. E 65, 066126 (2002) CrossRefADSGoogle Scholar
  11. P. Gopikrishnan, B. Rosenow, V. Plerou, H.E. Stanley, Phys. Rev. E 64, 035106 (2001) CrossRefADSGoogle Scholar
  12. D. Kim, H. Jeong, Phys. Rev. E 72, 046133 (2005) CrossRefADSGoogle Scholar
  13. H.E. Stanley, L.A.N Amaral, X. Gabaix, P. Gopikrishnan, V. Plerou, Physica A 126 (2001) Google Scholar
  14. L. Laloux, P. Cizeau, J.P. Bouchaud, M. Potters, Phys. Rev. Lett. 83, 1467 (1999); Risk 12, No. 3, 69 (1999); V. Plerou, P. Gopikrishnan, B. Rosenow, L.N. Amaral, H.E. Stanley, Phys. Rev. Lett. 83, 1471 (1999); M. Potters, J.P. Bouchaud, L. Laloux, arXiv: Physics/0507111 CrossRefADSGoogle Scholar
  15. A.M. Sengupta, P.P. Mitra, Phys. Rev. E 60, 3389 (1999) CrossRefADSGoogle Scholar
  16. F. Lillo, R. Mantegna, Phys. Rev. E 62, 6126 (2000); Eur. Phys. J. B 15, 603 (2000); Eur, Phys. J.B 20, 503 (2001); F. Lillo, G. Bonanno, R.N. Mantegna, Empirical Science of Financial Fluctuations, Econophysics on the Horizon, edited by H. Takayasu (Springer-Verlag Tokio, 2002); S. Micciche, G. Bonanno, F. Lillo, R. Mantegna, Physica A 314, 756 (2002); F. Lillo, R.N. Mantegna, Phys. Rev. E 72, 016219 (2005) CrossRefADSGoogle Scholar
  17. S. Drozdz, F. Grummer, A.Z. Gorski, F. Ruf, J. Speth, Physica A 287, 440 (2000); S. Drozdz, F. Grummer, F. Ruf, J. Speth, Physica A 294, 226 (2001); Empirical Science of Financial Fluctuations, edited by H. Takayasu (Springer-Verlag Tokio 2002), p. 41 CrossRefADSGoogle Scholar
  18. Z. Burda, J. Jurkiewiez, M.A. Nowak, G. Papp, I. Zahed, e-print cond-mat/0103108; Z. Burda, A. Goerlich, A. Jarosz, J. Jurkiewicz, e-print cond-mat/0305627 Google Scholar
  19. D. Wilcox, T. Gebbie, arXiv:cond-mat/0402389; arXiv:cond-mat/0404416 Google Scholar
  20. C. Mounfield, P. Ormerod, Market Correlation and Market Volatility in US Blue Chip Stocks, Crowell Prize Submission, 2001 Google Scholar
  21. S.S.S. Kumar, Forecasting volatility - Evidence from Indian Stock and Forex Markets, IIMK/WPS/08/FIN/2006/06 Google Scholar
  22. S. Bianco, R. Reno, Unexpected Volatility and intraday serial correlation, arXiv:physics/0610023, v1 3 October, 2006 Google Scholar
  23. Technical Analysis of Indian stock market BSE Sensex Index, Trend trading Newsletter, Traders Edge India Google Scholar
  24. An Introduction to High Frequency Finance, G. Ramazan, M. Dacorogna, U. Muller, R. Olsen, O. Pictet (Academic Press Inc., London Ltd) Google Scholar
  25. M. Mehta, Random Matrices (Academic Press, 1991) Google Scholar
  26. Standard formula's for Karl Pearson's correlation coefficient can be found at Google Scholar
  27. R. Rak, S. Drozdz, J. Kwapien, arXiv:physics/0603071; R. Rak, S. Drozdz, J. Kwapien, P. Oswiecimka, arXiv:physics/0606041 Google Scholar
  28. R. Johnson, D.W. Wichern (Applied Multivariate Statistical Analysis) (Prentice Hall International Inc., London, 1982) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Physics and AstrophysicsUniversity of DelhiDelhiIndia
  2. 2.Department of StatisticsUniversity of Wisconsin-Madison, Medical Science Center, 1300 University AvenueMadisonUSA

Personalised recommendations