Abstract.
The similarities between phase separation in physics and residential segregation by preference in the Schelling model of 1971 are reviewed. Also, new computer simulations of asymmetric interactions different from the usual Ising model are presented, showing spontaneous magnetisation (=self-organising segregation) and in one case a sharp phase transition.
This is a preview of subscription content, access via your institution.
References
T.C. Schelling, J. Math. Sociol. 1, 143 (1971)
F.L. Jones, Aust. NZ. J. Sociol. 21, 431 (1985)
M. Fossett, J. Math. Sociol. 30, 185 (2006)
N.E. Aydinomat, Schelling, Economics Bulletin 2, 1 (2005)
W.A.V. Clark, J. Math. Sociol. 30, 319 (2006)
B. Edmonds, D. Hales, J. Math. Sociol. 29, 209 (2005)
J.F. Zhang, J. Math. Sociol. 28, 147 (2004)
M. Levy, H. Levy, S. Solomon, Microscopic Simulation of Financial Markets (Academic Press, San Diego, 2000)
H. Meyer-Ortmanns, Int. J. Mod. Phys. C 14, 311 (2003)
C. Schulze, Int. J. Mod. Phys. C 16, 351 (2005)
V. Spirin, P.L. Krapivsky, S. Redner, Phys. Rev. E 63, 036118 (2001)
S. Galam, Y. Gefen, Y. Shapir, J. Math. Sociol. 9, 1 (1982); E. Callen, D. Shapero, Physics Today, July, 23 (1974)
D. Stauffer, A. Aharony, Introduction to Percolation Theory, 2nd edn. (Taylor and Francis, London, 1992)
D. Vinkovic, A. Kirman, Proc. Natl. Acad. Sci. USA 103, 19261 (2006)
D. Stauffer, P.M.C. de Oliveira, Physica A 215, 407 (1995)
J. Friedrichs, Urban Studies 35, 1745 (1998)
D.P. Landau, K. Binder, A Guide to Monte Carlo Simulations in Statistical Physics (Cambridge University Press, Cambridge, 2000)
K. Müller, C. Schulze, D. Stauffer, e-print arXiv:0706.2592
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Stauffer, D., Solomon, S. Ising, Schelling and self-organising segregation. Eur. Phys. J. B 57, 473–479 (2007). https://doi.org/10.1140/epjb/e2007-00181-8
Received:
Published:
Issue Date:
DOI: https://doi.org/10.1140/epjb/e2007-00181-8
PACS.
- 05.50.+q Lattice theory and statistics (Ising, Potts, etc.)
- 89.65.-s Social and economic systems
- 89.75.-K Complex systems