Skip to main content

Statistics of football dynamics

Abstract.

We investigate the dynamics of football matches. Our goal is to characterize statistically the temporal sequence of ball movements in this collective sport game, searching for traits of complex behavior. Data were collected over a variety of matches in South American, European and World championships throughout 2005 and 2006. We show that the statistics of ball touches presents power-law tails and can be described by q-gamma distributions. To explain such behavior we propose a model that provides information on the characteristics of football dynamics. Furthermore, we discuss the statistics of duration of out-of-play intervals, not directly related to the previous scenario.

This is a preview of subscription content, access via your institution.

References

  • L.C. Malacarne, R.S. Mendes, Physica A 286, 391 (2000); J. Greenhough, P.C. Birch, S.C. Chapman, G. Rowlands, Physica A 316, 615 (2002)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  • J. Park, M.E.J. Newman, arXiv:physics/0505169

  • M.E. Glickman, S. Hal, J. Am. Stat. Ass. 93, 25 (1998)

    MATH  Article  Google Scholar 

  • R.N. Onody, P.A. de Castro, Phys. Rev. E 70, 037103 (2004)

    Article  ADS  Google Scholar 

  • A. Borrie, G.K. Jonsson, M.S. Magnusson, Journal of Sports Sciences 20, 845 (2002); G.K. Jonsson, S.H. Bjarkadottir, B. Gislason, in Measuring Behavior 2000, 3rd International Conference on Methods and Techniques in Behavioral Research, edited by L.P.J.J. Noldus (Nijmegen, Netherlands, 2000), pp. 168–171

    Article  Google Scholar 

  • C. Beck, E.G.D. Cohen, Physica A 322, 267 (2003)

    MATH  Article  MathSciNet  ADS  Google Scholar 

  • C. Tsallis, J. Stat. Phys. 52, 479 (1988); Nonextensive Mechanics and Thermodynamics, edited by S. Abe, Y. Okamoto, Lecture Notes in Physics, Vol. 560 (Springer, Berlin, 2001); C. Tsallis, J. Stat. Phys. 52, 479 (1988); C. Tsallis in Non-Extensive Entropy-Interdisciplinary Applications, edited by M. Gell-Mann, C. Tsallis (Oxford University Press, Oxford, 2004)

    MATH  Article  MathSciNet  Google Scholar 

  • W. Feller, An introduction to probability theory and its applications (Wiley, New York, 1968)

  • A.M. Law, W.D. Kelton, Simulation, modeling and analysis (McGraw-Hill, New York, 1991)

  • N.L. Jonhson, S. Kotz, Distribution in statistics: continuous univariate distributions (John Wiley & Sons, New York, 1970)

  • C. Beck, E.G.D. Cohen, H.L. Swinney, Phys. Rev. E 72, 056133 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  • S.M.D. Queirós, Europhys. Lett. 71, 339 (2005); arXiv:physics/0411111; S.M.D. Queirós, C. Anteneodo, C. Tsallis, Noise and Fluctuations in Econophysics and Finance, edited by D. Abbott, J.-P. Bouchaud, X. Gabaix, J.L. McCauley, Proceedings of SPIE, 5848 (SPIE, Bellingham, WA, 2005), 151; C. Anteneodo, R. Riera, Phys. Rev. E 71, 201061 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  • J.H. Jerrold, Biostatistical analysis (Prentice Hall, New Jersey 1999); W.H. Press, B.P. Flannery, S.A. Teukolsky, W.T. Vetterling, Numerical Recipes. The Art of Scientific Computing (Cambridge University Press, Cambridge, 1986)

  • H. Akaike, IEEE Transactions on Automatic Control 19, 716 (1974); G. Schwarz, Annals of Statistics 6, 461 (1978)

    MATH  Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Anteneodo.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mendes, R., Malacarne, L. & Anteneodo, C. Statistics of football dynamics. Eur. Phys. J. B 57, 357–363 (2007). https://doi.org/10.1140/epjb/e2007-00177-4

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2007-00177-4

PACS.

  • 02.50.-r Probability theory, stochastic processes, and statistics
  • 89.90.+n Other topics in areas of applied and interdisciplinary physics
  • 01.80.+b Physics of games and sports