The European Physical Journal B

, Volume 57, Issue 2, pp 165–174 | Cite as

Transport between multiple users in complex networks

  • S. CarmiEmail author
  • Z. Wu
  • E. López
  • S. Havlin
  • H. Eugene Stanley
Topical Issue on Physics in Society


We study the transport properties of model networks such as scale-free and Erdös-Rényi networks as well as a real network. We consider few possibilities for the trnasport problem. We start by studying the conductance G between two arbitrarily chosen nodes where each link has the same unit resistance. Our theoretical analysis for scale-free networks predicts a broad range of values of G, with a power-law tail distribution $\Phi_{\rm SF}(G)\sim G^{-g_G}$ , where gG=2λ-1, and λ is the decay exponent for the scale-free network degree distribution. The power-law tail in ΦSF(G) leads to large values of G, thereby significantly improving the transport in scale-free networks, compared to Erdös-Rényi networks where the tail of the conductivity distribution decays exponentially. We develop a simple physical picture of the transport to account for the results. The other model for transport is the max-flow model, where conductance is defined as the number of link-independent paths between the two nodes, and find that a similar picture holds. The effects of distance on the value of conductance are considered for both models, and some differences emerge. We then extend our study to the case of multiple sources ans sinks, where the transport is defined between two groups of nodes. We find a fundamental difference between the two forms of flow when considering the quality of the transport with respect to the number of sources, and find an optimal number of sources, or users, for the max-flow case. A qualitative (and partially quantitative) explanation is also given.


89.75.Hc Networks and genealogical trees 05.60.Cd Classical transport 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. S. Havlin, D. ben-Avraham, Adv. Phys. 36, 695 (1987) CrossRefADSGoogle Scholar
  2. D. ben-Avraham, S. Havlin, Diffusion and reactions in fractals and disordered systems (Cambridge, New York, 2000) Google Scholar
  3. A. Bunde, S. Havlin, edited by Fractals and Disordered Systems (Springer, New York, 1996) Google Scholar
  4. R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002); R. Pastor-Satorras, A. Vespignani, Structure and Evolution of the Internet: A Statistical Physics Approach (Cambridge University Press, Cambridge, 2004); S.N. Dorogovsetv, J.F.F. Mendes, Evolution of Networks: From Biological Nets to the Internet and WWW (Oxford University Press, Oxford, 2003) CrossRefADSMathSciNetGoogle Scholar
  5. G. Bonanno, G. Caldarelli, F. Lillo, R.N. Mantegna, Phys. Rev. E 68, 046130 (2003) CrossRefADSGoogle Scholar
  6. J.-P. Onnela, A. Chakraborti, K. Kaski, J. Kertész, A. Kanto, Phys. Rev. E 68, 056110 (2003) CrossRefADSGoogle Scholar
  7. H. Inaoka, T. Ninomiya, K. Taniguchi, T. Shimizu, H. Takayasu, Fractal Network derived from banking transaction – An analysis of network structures formed by financial institutions, Bank of Japan Working Paper Series, 04-E-04 (2004); H. Inaoka, H. Takayasu, T. Shimizu, T. Ninomiya, K. Taniguchi, Physica A 339, 62 (2004) CrossRefMathSciNetGoogle Scholar
  8. P. Erdös, A. Rényi, Publ. Math. (Debreccen) 6, 290 (1959) zbMATHGoogle Scholar
  9. B. Bollobás, Random Graphs (Academic Press, Orlando, 1985) Google Scholar
  10. A.-L. Barabási, R. Albert, Science 286, 509 (1999) CrossRefMathSciNetGoogle Scholar
  11. P.L. Krapivsky, S. Redner, F. Leyvraz, Phys. Rev. Lett. 85, 4629 (2000) CrossRefADSGoogle Scholar
  12. H.A. Simon, Biometrika 42, 425 (1955) zbMATHMathSciNetGoogle Scholar
  13. R. Cohen, S. Havlin, Phys. Rev. Lett. 90, 058701 (2003) CrossRefADSGoogle Scholar
  14. In principle, a node can have a degree up to N-1, connecting to all other nodes of the network. The results presented here correspond to networks with upper cutoff k max=kminN1/(λ-1) imposed. We also studied networks for which kmax is not imposed, and found no significant differences in the pdf ΦSF(G) Google Scholar
  15. E. López, S.V. Buldyrev, S. Havlin, H.E. Stanley, Phys. Rev. Lett. 94, 248701 (2005) CrossRefADSGoogle Scholar
  16. S. Havlin, E. López, S.V. Buldyrev, H.E. Stanley, in Diffusion Fundamentals, edited by Jörg Kärger, Farida Grinberg, Paul Heitjans (Leipzig: Universitätsverlag, 2005), pp. 38–48 Google Scholar
  17. E. Lopez, S. Carmi, S. Havlin, S. Buldyrev, H.E. Stanley, Physica D 224, 69 (2006) zbMATHCrossRefADSMathSciNetGoogle Scholar
  18. G.R. Grimmett, H. Kesten, J. Lond. Math. Soc. 30, 171 (1984); e-print arXiv:math/0107068 zbMATHCrossRefMathSciNetGoogle Scholar
  19. D.-S. Lee, H. Rieger, Europhys. Lett. 73, 471 (2006) CrossRefADSMathSciNetGoogle Scholar
  20. Z. Toroczkai, K. Bassler, Nature 428, 716 (2004) CrossRefADSGoogle Scholar
  21. J.D. Noh, H. Rieger, Phys. Rev. Lett. 92, 118701 (2004) CrossRefADSGoogle Scholar
  22. V. Sood, S. Redner, D. ben-Avraham, J. Phys. A, 38, 109 (2005) Google Scholar
  23. L.K. Gallos, Phys. Rev. E 70, 046116 (2004) CrossRefADSGoogle Scholar
  24. B. Tadic, G.J. Rodgers, Advances in Complex Systems 5, 445 (2002) CrossRefGoogle Scholar
  25. The dynamical properties we study are related to transport on networks and differ from those which treat the network topology itself as evolving in time scale-Barabasi, dyn-network Google Scholar
  26. R.K. Ahuja, T.L. Magnanti, J.B. Orlin, Network Flows: Theory, Algorithms, and Applications (Prentice Hall, 1993) Google Scholar
  27. The study of community structure in social networks has led some authors (M.E.J. Newman, M. Girvan, Phys. Rev. E 69, 026113 (2004); F. Wu, B.A. Huberman, Eur. Phys. J. B 38, 331 (2004)) to develop methods in which networks are considered as electrical networks in order to identify communities. In these studies, however, transport properties have not been addressed CrossRefADSGoogle Scholar
  28. M. Molloy, B. Reed, Random Struct. Algorithms 6, 161 (1995) zbMATHMathSciNetCrossRefGoogle Scholar
  29. G. Kirchhoff, Ann. Phys. Chem. 72 497 (1847); N. Balabanian, Electric Circuits (McGraw-Hill, New York, 1994) Google Scholar
  30. S. Kirkpatrick, Proceedings of Inhomogeneous Superconductors Conference, Berkeley Springs, W. Va, edited by S.A. Wolf, D.U. Gubser, A.I.P. Conf. Procs. 58, 79 (1979) CrossRefADSGoogle Scholar
  31. B.V. Cherkassky, Algorithmica 19, 390 (1997) zbMATHCrossRefMathSciNetGoogle Scholar
  32. Z. Wu, L.A. Braunstein, S. Havlin, H.E. Stanley, Phys. Rev. Lett. 96, 148702 (2006) CrossRefADSGoogle Scholar
  33. S. Carmi, S. Havlin, S. Kirkpatrick, Y. Shavitt, E. Shir, MEDUSA - New Model of Internet Topology Using k-shell Decomposition, arXiv:cond-mat/0601240 Google Scholar
  34. Y. Shavitt, E. Shir, ACM SIGCOMM Computer Communication Review, 35, 71 (2005) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2007

Authors and Affiliations

  • S. Carmi
    • 1
    Email author
  • Z. Wu
    • 2
  • E. López
    • 3
  • S. Havlin
    • 1
    • 2
  • H. Eugene Stanley
    • 2
  1. 1.Minerva Center & Department of PhysicsBar-Ilan UniversityRamat GanIsrael
  2. 2.Center for Polymer Studies, Boston UniversityBostonUSA
  3. 3.Theoretical DivisionLos Alamos National LaboratoryLos AlamosUSA

Personalised recommendations