Skip to main content
Log in

Modelling disorder: the cases of wetting and DNA denaturation

  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract.

We study the effect of the composition of the genetic sequence on the melting temperature of double stranded DNA, using some simple analytically solvable models proposed in the framework of the wetting problem. We review previous work on disordered versions of these models and solve them when there were not preexistent solutions. We check the solutions with Monte Carlo simulations and transfer matrix numerical calculations. We present numerical evidence that suggests that the logarithmic corrections to the critical temperature due to disorder, previously found in RSOS models, apply more generally to ASOS and continuous models. The agreement between the theoretical models and experimental data shows that, in this context, disorder should be the crucial ingredient of any model while other aspects may be kept very simple, an approach that can be useful for a wider class of problems. Our work has also implications for the existence of correlations in DNA sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • D. Poland, H.A. Scheraga, J. Chem. Phys. 45, 1456 (1966); D. Poland, H.A. Scheraga, J. Chem. Phys. 45, 1464 (1966); D. Poland, Biopolymers 73, 216 (2004); C. Richard, A.J. Guttmann, J. Stat. Phys. 115, 925 (2004)

    Article  ADS  Google Scholar 

  • M. Peyrard, A.R. Bishop, Phys. Rev. Lett. 62, 2755 (1989)

    Article  ADS  Google Scholar 

  • T. Dauxois, M. Peyrard, A.R. Bishop, Phys. Rev. E 47, R44 (1993); T. Dauxois, M. Peyrard, Phys. Rev. E 51, 4027 (1995)

    Article  ADS  Google Scholar 

  • L.V. Yakushevich, Nonlinear Models of DNA, 2nd edn. (Wiley, 2004)

  • C.H. Choi, G. Kalosakas, K.Ø. Rasmussen, M. Hiromura, A.R. Bishop, A. Usheva, Nucleic Acids Res. 32, 1584 (2004); G. Kalosakas, K.Ø. Rasmussen, A.R. Bishop, C.H. Choi, A. Usheva, Europhys. Lett. 68, 127 (2004)

    Article  Google Scholar 

  • T.S. van Erp, S. Cuesta-López, J.-G. Hagmann, M. Peyrard, Phys. Rev. Lett. 95, 218104 (2005)

    Article  ADS  Google Scholar 

  • S. Ares, N.K. Voulgarakis, K.Ø. Rasmussen, A.R. Bishop, Phys. Rev. Lett. 94, 035504 (2005)

    Article  ADS  Google Scholar 

  • A. Montrichok, G. Gruner, G. Zocchi, Europhys. Lett. 62, 452 (2003); Y. Zeng, A. Montrichok, G. Zocchi, Phys. Rev. Lett. 91, 148101 (2003); Y. Zeng, A. Montrichok, G. Zocchi, J. Mol. Biol. 339, 67 (2004)

    Article  ADS  Google Scholar 

  • S.T. Chui, J.D. Weeks, Phys. Rev. B 23, R2438 (1981)

  • J.M.J. van Leeuwen, H.J. Hilhorst, Physica A 107, 319 (1981)

    Article  ADS  MathSciNet  Google Scholar 

  • T.W. Burkhardt, J. Phys. A 14, L63 (1981)

  • J.A. Cuesta, A. Sánchez, J. Stat. Phys. 115, 869 (2004)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • G. Forgacs, J.M. Luck, Th.M. Nieuwenhuizen, H. Orland, Phys. Rev. Lett. 57, 2184 (1986); J. Stat. Phys. 51, 29 (1988)

    Article  ADS  Google Scholar 

  • B. Derrida, V. Hakim, J. Vannimenus, J. Stat. Phys. 66, 1189 (1992)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • S.M. Bhattacharjee, S. Mukherji, Phys. Rev. Lett. 70, 49 (1993); S. Mukherji, S.M. Bhattacharjee, Phys. Rev. E 48, 3483 (1993)

    Article  ADS  Google Scholar 

  • T.W. Burkhardt, J. Phys. A 31, L549 (1998)

  • P. Nowakowski, M. Napiórkowski, J. Phys. A 38, 5885 (2005)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • T. Dauxois, M. Peyrard, A.R. Bishop, Phys. Rev. E 47, 684 (1993)

    Article  ADS  Google Scholar 

  • J. Marmur, P. Doty, J. Mol. Biol. 5, 109 (1962)

    Article  Google Scholar 

  • Monte Carlo simulations have been done following the procedure described in MC2. 5×105 tries of replica exchange are used, and between them each replica is simulated a number of Monte Carlo steps equal to the energy autocorrelation time at the replica's temperature, determined during previous simulations used for equilibration

  • S. Ares, J.A. Cuesta, A. Sánchez, R. Toral, Phys. Rev. E 67, 046108 (2003)

    Article  ADS  Google Scholar 

  • N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, E. Teller, J. Chem. Phys. 21, 1087 (1953)

    Article  ADS  Google Scholar 

  • M.E.J. Newman, G.T. Barkema, Monte Carlo Methods in Statistical Physics (Oxford University, Oxford, 1999)

  • Y. Iba, Int. J. Mod. Phys. C 12, 623 (2001)

    Article  ADS  Google Scholar 

  • S. Ares, A. Sánchez, Phys. Rev. E 70, 061607 (2004)

    Article  ADS  Google Scholar 

  • A. Campa, A. Giansanti, Phys. Rev. E 58, 3585 (1998)

    Article  ADS  Google Scholar 

  • S. Ares, A. Sánchez, unpublished data

  • B.H. Park, M. Levitt, J. Mol. Biol. 249, 493 (1995)

    Article  Google Scholar 

  • M.E.J. Newman, SIAM Rev. 45, 167 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • K. Binder, A.P. Young, Rev. Mod. Phys. 58, 801 (1986)

    Article  ADS  Google Scholar 

  • W. Li, Computers Chem. 21, 257 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ares.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ares, S., Sánchez, A. Modelling disorder: the cases of wetting and DNA denaturation. Eur. Phys. J. B 56, 253–258 (2007). https://doi.org/10.1140/epjb/e2007-00112-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2007-00112-9

PACS.

Navigation