Skip to main content
Log in

Internal structure of fluctuating Cooper pairs

  • Solid and Condensed State Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

In order to obtain information about the internal structure of fluctuating Cooper pairs in the pseudogap state and below the transition temperature of high Tc superconductors, we solve the Bethe-Salpeter equation for the two-electron propagator in order to calculate a “pair structure function” \(g_{P}({\mathbf{P}},\pmb{\rho})\) that depends on the internal distance \(\pmb{\rho}\) between the partners and on the center of mass momentum P of the pair. We use an attractive Hubbard model with a local potential for s-wave and a separable potential for d-wave symmetry. The amplitude of gP for small ρ depends on temperature, chemical potential and interaction symmetry, but the ρ dependence itself is rather insensitive to the interaction strength. Asymptotically gP decreases as an inverse power of ρ for weak coupling, but exponentially when a pseudogap develops for stronger interaction. Some possibilities of observing the pair structure experimentally are mentioned.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • T. Timusk, B. Statt, Rep. Prog. Phys. 62, 61 (1999)

    Article  ADS  Google Scholar 

  • M. Randeria, Proceedings of the International School of Physics “Enrico Fermi”, CXXXVI Course, Varenna (1997), arXiv:cond-Mat/9710223

  • Z.A. Xu, N.P. Ong, Y. Wang, T. Kakeshita, S. Uchida, Nature 406, 486 (2000); see also U. Thisted, J. Nyhus, T. Suzuki, J. Hori, K. Fossehim, arXiv:cond-mat/0304009

    Article  ADS  Google Scholar 

  • J.V. Emery, S.A. Kivelson, Nature 374, 434 (1998)

    Article  ADS  Google Scholar 

  • Q. Chen, I. Kosztin, B. Jankó, K. Levin, Phys. Rev. Lett. 81, 4708 (1998)

    Article  ADS  Google Scholar 

  • M. Fortes, M.A. Solís, M. de Llano, V.V. Tolmachev, Physica C 364–365, 95 (2001)

  • P. Noziéres, S. Schmitt-Rink, J. Low Temp. Phys. 59, 195 (1985)

    Article  Google Scholar 

  • Y.-J. Kao, A.P. Iyengar, Q. Chen, K. Levin, Phys. Rev. 64, 140505 (2001)

    Article  Google Scholar 

  • F. Pistolesi, G.C. Strinati, Phys. Rev. B 49, 6356 (1994)

    Article  ADS  Google Scholar 

  • L. Benfatto, A. Toschi, S. Caprara, C. Castellani, Phys. Rev. B 66, 054515 (2002)

    Article  ADS  Google Scholar 

  • R. Micnas, M.H. Pedersen, S. Schafroth, T. Schneider, J.J. Rodríguez-Núñez, H. Beck, Phys. Rev. B 52, 16223 (1995)

    Article  ADS  Google Scholar 

  • M. Yu. Kagan, R. Frésard, M. Capezzali, H. Beck, Phys. Rev. B 57, 5995 (1998)

    Article  ADS  Google Scholar 

  • J.M. Singer, M.H. Pedersen, T. Schneider, H. Beck, H.-G. Matuttis, Phys. Rev. B 54, 1286 (1996)

    Article  ADS  Google Scholar 

  • R. Micnas, J. Ranninger, S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990); T. Kostyrko, R. Micnas, Phys. Rev. B 46, 11025 (1992)

    Article  ADS  Google Scholar 

  • L.P. Kadanoff, G. Baym, Quantum Statistical Mechanics (New York, W.A. Benjamin Inc., 1962)

  • A. Sewer, H. Beck, Phys. Rev. B 64, 224524 (2001)

    Article  ADS  Google Scholar 

  • J.R. Engelbrecht, A. Nazarenko, M. Randeria, E. Dagotto, Phys. Rev. B 57, 13406 (1998)

    Article  ADS  Google Scholar 

  • N. Andrenacci, A. Perali, P. Pieri, G.C. Strinati, Phys. Rev. B 60, 12410 (1999)

    Article  ADS  Google Scholar 

  • See, for example: M. Greiner, O. Mandel, T. Esslinger, T.W. Hänsch, I. Bloch, Nature 415, 39 (2002); C. Orzel, A.K. Tuchman, M.L. Febnselau, M Yasuda, M.A. Kasevich, Science 291, 2386 (2001)

    Article  Google Scholar 

  • B. Paredes, J.I. Cirac, Phys. Rev. Lett. 90, 150402 (2003)

    Article  ADS  Google Scholar 

  • F. Pistolesi, G.C. Strinati, Phys. Rev. B 53, 15168 (1996)

    Article  ADS  Google Scholar 

  • D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (Benjamin, MA, 1975)

  • For a discussion on intrinsic vs. extrinsic pseudogap scenario, see, e.g., J. Stajic, A. Iyengar, K. Levin, B.R. Boyce, T.R. Lemberger, Phys. Rev. B 68, 0245020 (2003)

    Google Scholar 

  • D. van der Marel, Optical signatures of electron correlations in the cuprates, Chapter in "Strong interactions in low dimensions", Series: Physics and Chemistry of Materials with Low-Dimensional Structures, Vol. 25, edited by D. Baeriswyl, L. Degiorgi (Kluwer, 2005), VI, ISBN: 1-4020-1798-7, cond-mat/0301506

  • A.A. Varlamov, G. Balestrino, E. Milani, D.V. Livanov, Adv. Phys. 48, 655 (1999)

    Article  ADS  Google Scholar 

  • A.A. Abrikosov, Fundamental of the Theory of Metals (Elsevier, Amsterdam, 1988), Chap. 17

  • G.-Q. Zheng, H. Ozaki, W.G. Clark, Y. Kitaoka, P. Kuhns, A.P. Reyes, W.G. Moulton, T. Kondo, Y. Shimakawa, Y. Kubo, Phys. Rev. Lett. 85, 405 (2000)

    Article  ADS  Google Scholar 

  • E. Altman, E. Demler, M.D. Lukin, Phys. Rev. A 70, 013603 (2004)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Capezzali.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andrenacci, N., Capezzali, M. & Beck, H. Internal structure of fluctuating Cooper pairs. Eur. Phys. J. B 53, 417–432 (2006). https://doi.org/10.1140/epjb/e2006-00397-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2006-00397-0

PACS.

Navigation