Skip to main content
Log in

Electronic properties of multi-quantum dot structures in Cd 1-xZn xS alloy semiconductors

  • Solid and Condensed State Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

In this paper, we present a theoretical study of the quantized electronic states in Cd1-xZnxS quantum dots. The shape of the confining potential, the subband energies and their eigen envelope wave functions are calculated by solving a one-dimensional Schrödinger equation. Electrons and holes are assumed to be confined in dots having a flattened cylindrical geometry with a finite barrier height at the boundary. Optical absorption measurements are used to fit the bandgap edge of the Cd1-xZnxS nanocrystals. An analysis of the electron band parameters has been made as a function of Zn composition. Two main features were revealed: (i) a multiplicity in Cd1-xZnxS quantum dots with different crystalline sizes has been found to fit accurately experimental data in the composition range 0 ≤x ≤0.2; (ii) the fit did not, however, show a multiplicity for x higher than 0.4. On the other hand, we have calculated the energy level structure of coupled Cd1-xZnxS semiconductor quantum dots using the tight-binding approximation. As is found the Zn composition x = 0.4 is expected to be the most favorable to give rise a superlattice behavior for the Cd1-xZnxS quantum dots studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • W. Yang, H. Lee, P. Sercel, A. Norman, SPIE Photonics 1, 3325 (1999)

    Google Scholar 

  • W. Yang, H. Lee, J. Johnson, P. Sercel, A. Norman, Phys. Rev. B

  • T. Metzger, I. Kegel, R. Paniago, J. Peisel (private communication, 1999)

  • J. Garcia, G. Medeiros-Ribeiro, K. Scmidt, T. Ngo, F. Feng, A. Lorke, J. Kotthaus, P. Petroff, Appl. Phys. Lett. 71, 2014 (1997)

    Article  ADS  Google Scholar 

  • M. Rubin, G. Medeiros-Ribeiro, J. O'Shea, M. Chin, E. Lee, P. Petroff, V. Narayanamurti, Phys. Rev. Lett. 77, 5268 (1996)

    Article  ADS  Google Scholar 

  • A.J. Williamson, L.W. Wang, A. Zunger, Phys. Rev. B 62, 19, 12963 (2000)

    Article  Google Scholar 

  • M. Grundmann, O. Stier, D. Bimberg, Phys. Rev. B 52, 16, 11969 (1995)

    Article  Google Scholar 

  • K.K. Nanda, S.N. Sarangi, S. Mohanty, S.N. Sahu, Thin Solid Films 322, 21 (1998)

    Article  Google Scholar 

  • Q. Pang, B.C. Guo, C.L. Yang, S.H. Yang, M.L. Gong, W.K. Ge, J.N. Wang, J. Crystal Growth 269, 213 (2004)

    Article  Google Scholar 

  • M.C. Klein, F. Hache, D. Ricard, C. Flytzanis, Phys. Rev. B 42, 11123 (1990)

    Article  ADS  Google Scholar 

  • H. Yükseici, P.D. Persans, T.M. Hayes, Phys. Rev. B 52, 16, 11763 (1995)

    Article  ADS  Google Scholar 

  • B. Bhattacharjee, S.K. Mandal, K. Chakrabarti, D. Ganguli, S. Chaudhui, J. Phys. D: Appl. Phys. 35, 2636 (2002)

    Article  ADS  Google Scholar 

  • N. Safta, A. Sakly, H. Mejri, Y. Bouazra, Eur. Phys. J. B 51, 75 (2006)

    Article  ADS  Google Scholar 

  • A. Franceschetti, H. Fu, L.W. Wang, A. Zunger, Phys. Rev. B 60, 1819 (1999)

    Article  ADS  Google Scholar 

  • M.C. Troparevsky, L. Kronic, J.R. Chelikowsky, J. Chem. Phys. 119, 2284 (2003)

    Article  ADS  Google Scholar 

  • H.L. Kwok, J. Phys. D/Appl. Phys. 16, 2367 (1983)

    ADS  Google Scholar 

  • K.A. Pal, A. Dhar, A. Mondal, R.L. Basak, S. Chaudhuri, Proc. IEEE, Las Vegas, Nevada, 1646 (1988)

  • U. Sohlimg, G. Jung, M. Mennig, J. Sol. Gel Sci. Technol. 13, 635 (1998)

    Article  Google Scholar 

  • K. Sooklal, B.S. Cullum, S.M. Angel, C.J. Murphy, J. Phys. Chem. 100, 4551 (1996)

    Article  Google Scholar 

  • P. Reiss, J. Bleuse, A. Pron, Nano Lett. 2, 781 (2002)

    Article  Google Scholar 

  • P. Reiss, J. Bleuse, F. Chandezon, A. Pron, H. Ulmer-Tuffigo, DRF News. 2, 10 (2002)

    MATH  Google Scholar 

  • V. Alberts, R. Herberhonz, T. Walter, H.W. Schock, J. Phys. D: Appl. Phys. 30, 2156 (1997)

    Article  ADS  Google Scholar 

  • N. Kohara, T. Negami, M. Nishitani, T. Wada, Jpn J. Appl. Phys. 34, L 1141 (1995)

    Google Scholar 

  • W. Ekardt, K. Losch, D. Bimberg, Phys. Rev. B 20, 3303 (1979)

    Article  ADS  Google Scholar 

  • G.K. Padam, G.L. Mahotra, S.U.M. Rao, J. Appl. Phys. 63, 770 (1988)

    Article  ADS  Google Scholar 

  • G.K. Padam, G.L. Malhotra, S.U.M. Rao, J. Appl. Phys. 63, 770 (1988)

    Article  ADS  Google Scholar 

  • R.L. Basak, S. Chaudhuri, A.K. Pal, J. Mater. Sci. Lett. 7, 1048 (1988)

    Article  Google Scholar 

  • A. Dhar, R.L. Basak, S. Chaudhuri, A.K. Pal, Indian J. Phys. 64 A, 10 (1990)

    MathSciNet  Google Scholar 

  • A. Dhar, S. Chaudhuri, A.K. Pal, J. Mater. Sci. 26, 4416 (1991)

    Article  ADS  Google Scholar 

  • M.W. Kane, J.P. Spratt, L.W. Hershinger, I.M. Khan, J. Electrochem. Soc. 113, 136 (1966)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Safta.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Safta, N., Sakly, A., Mejri, H. et al. Electronic properties of multi-quantum dot structures in Cd 1-xZn xS alloy semiconductors. Eur. Phys. J. B 53, 35–38 (2006). https://doi.org/10.1140/epjb/e2006-00350-3

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2006-00350-3

PACS.

Navigation