Skip to main content
Log in

Electrons in curved low-dimensional systems: spinors or half-order differentials?

  • Surfaces and Interfaces
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

The description of fermions on curved manifolds or in curvilinear coordinates usually requires a vielbein formalism to define Dirac γ-matrices or Pauli matrices on the manifold. Derivatives of the vielbein also enter equations of motion for fermions through the spin connection, which gauges local rotations or Lorentz transformations of tangent planes. The present paper serves a dual purpose. First we will see how the zweibein formalism on surfaces emerges from constraining fermions to submanifolds of Minkowski space. However, it is known e.g. in superstring theory, that so called half-order differentials can also be used to describe fermions in two dimensions. Therefore, in the second part, I will explain how in two dimensions the zweibein can be absorbed into the spinors to form half-order differentials. The interesting point about half-order differentials is that their derivative terms along a two-dimensional submanifold of Minkoski space look exactly like ordinary spinor derivatives in Cartesian coordinates on a planar surface, and the whole effect of the background geometry reduces to a universal factor multiplying orthogonal derivative terms and mass terms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • M. Lannoo, P. Friedel, Atomic and Electronic Structure of Surfaces (Springer-Verlag, Berlin, 1991)

  • H. Lüth, Solid Surfaces, Interfaces and Thin Films, 4th edn. (Springer-Verlag, Berlin, 2001)

  • W. Mönch, Semiconductor Surfaces and Interfaces, 3rd edn. (Springer-Verlag, Berlin, 2001)

  • W. Nolting, T. Dambeck, G. Borstel, Z. Phys. B 94, 409 (1994)

    Article  Google Scholar 

  • R. Schiller, W. Müller, W. Nolting, Eur. Phys. J. B 2, 249 (1998)

    Article  ADS  Google Scholar 

  • R. Schiller, W. Müller, W. Nolting, J. Phys. Cond. Mat. 11, 9589 (1999)

    Article  ADS  Google Scholar 

  • F.-H. Wang, P. Krüger, J. Pollmann, Phys. Rev. B 64, 035305 (2001)

    Article  ADS  Google Scholar 

  • M. Rohlfing, N.-P. Wang, P. Krüger, J. Pollmann, Surface Science 539, 19 (2005)

    Article  ADS  Google Scholar 

  • A. Eiguren, B. Hellsing, F. Reinert, G. Nicolay, E.V. Chulkov, V.M. Silkin, S. Hüfner, P.M. Echenique, Phys. Rev. Lett. 88, 066805 (2002)

    Article  ADS  Google Scholar 

  • J.L. Gavilano, D. Rau, S. Mushkolaj, H.R. Ott, P. Millet, F. Mila, Physica B 312–313, 622 (2002); Phys. Rev. Lett. 90, 167202 (2003)

    Article  Google Scholar 

  • A. BenAli, S. Charfi-Kaddour, G. Varelogiannis, C. Paquier, M. Héritier, D. Jérôme, R. Bennaceur, Physica C 408–410, 244 (2004)

    Google Scholar 

  • J.L. Gavilano, E. Felder, D. Rau, H.R. Ott, P. Millet, F. Mila, T. Cichorek, A.C. Mota, Phys. Rev. B 72, 064431 (2005)

    Article  ADS  Google Scholar 

  • R. Dick, Eur. Phys. J. B 29, 635 (2003)

    Article  ADS  Google Scholar 

  • R. Dick, Class. Quantum Grav. 18, R1 (2001)

  • R. Dick, Chiral Fields on Riemann Surfaces and String Vertices, Dissertation, Universität Hamburg, 1990; Fortschr. Phys. 40, 519 (1992)

    MathSciNet  Google Scholar 

  • N.S. Hawley, M. Schiffer, Acta Math. 115, 199 (1966)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • S.S. Chern, Proc. Amer. Math. Soc. 6, 771 (1955)

    Article  MATH  MathSciNet  Google Scholar 

  • R. Courant, D. Hilbert, Methods of Mathematical Physics, Vol. 2 (Interscience Publ., New York, 1962)

  • O. Lehto, in Discrete Groups and Automorphic Functions, edited by W.J. Harvey (Academic Press, London, 1977), p. 121

  • C. Itzykson, J.-M. Drouffe, Statistical Field Theory, 2 Vols. (Cambridge University Press, Cambridge, 1989)

  • R. Dick, Lett. Math. Phys. 18, 67 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  • A. Borel, F. Hirzebruch, Amer. J. Math. 81, 315 (1959)

    Article  MathSciNet  Google Scholar 

  • J. Milnor, Enseign. Math. 9, 198 (1963)

    MATH  MathSciNet  Google Scholar 

  • L. Baulieu, M. Bellon, Phys. Lett. B 196, 142 (1987)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Dick.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dick, R. Electrons in curved low-dimensional systems: spinors or half-order differentials?. Eur. Phys. J. B 53, 127–138 (2006). https://doi.org/10.1140/epjb/e2006-00338-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2006-00338-y

PACS.

Navigation