Skip to main content
Log in

Weak chaos and metastability in a symplectic system of many long-range-coupled standard maps

  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

We introduce, and numerically study, a system of N symplectically and globally coupled standard maps localized in a d=1 lattice array. The global coupling is modulated through a factor r, being r the distance between maps. Thus, interactions are long-range (nonintegrable) when 0≤α≤1, and short-range (integrable) when α>1. We verify that the largest Lyapunov exponent λM scales as λM ∝ N-κ(α), where κ(α) is positive when interactions are long-range, yielding weak chaos in the thermodynamic limit N↦∞ (hence λM→0). In the short-range case, κ(α) appears to vanish, and the behaviour corresponds to strong chaos. We show that, for certain values of the control parameters of the system, long-lasting metastable states can be present. Their duration tc scales as tc ∝Nβ(α), where β(α) appears to be numerically in agreement with the following behavior: β>0 for 0 ≤α< 1, and zero for α≥1. These results are consistent with features typically found in nonextensive statistical mechanics. Moreover, they exhibit strong similarity between the present discrete-time system, and the α-XY Hamiltonian ferromagnetic model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • C. Tsallis, J. Stat. Phys. 52, 479 (1988); for a recent review see Nonextensive Entropy – Interdisciplinary Applications, edited by M. Gell-Mann, C. Tsallis (Oxford University Press, New York, 2004)

    Article  MATH  MathSciNet  Google Scholar 

  • L. Boltzmann, Lectures on Gas Theory (Dover, New York, 1995)

  • A.I. Kinchin, Mathematical Foundations of Information Theory (Dover, New York, 1957) and Mathematical Foundations of Statistical Mechanics (Dover, New York, 1960)

  • D. Prato, C. Tsallis, Phys. Rev. E 60, 2398 (1999)

    Article  ADS  Google Scholar 

  • For a regularly updated bibliography see http://tsallis.cat.cbpf.br/biblio.htm

  • Nonextensive Statistical Mechanics and Thermodynamics, edited by S.R.A. Salinas, C. Tsallis, Braz. J. Phys. 29, Number 1 (1999); Nonextensive Statistical Mechanics and its Applications, edited by S. Abe, Y. Okamoto, Lecture Notes in Physics 560 (Springer-Verlag, Heidelberg, 2001); Non-Extensive Thermodynamics and Physical Applications, edited by G. Kaniadakis, M. Lissia, A. Rapisarda, Physica A 305 (2002); Classical and Quantum Complexity and Nonextensive Thermodynamics, edited by P. Grigolini, C. Tsallis, B.J. West, Chaos, Solitons and Fractals 13, Number 3 (2002); Nonadditive entropy and nonextensive statistical mechanics, edited by M. Sugiyama, Continuum Mechanics and Thermodynamics 16 (Springer-Verlag, Heidelberg, 2004); Anomalous Distributions, Nonlinear Dynamics and Nonextensivity, edited by H.L. Swinney, C. Tsallis, Physica D 193 (2004); News and Expectations in Thermostatistics, edited by G. Kaniadakis, M. Lissia, Physica A 340, 1 (2004); Trends and Perspectives in Extensive and Non-Extensive Statistical Mechanics, edited by H. Herrmann, M. Barbosa, E. Curado, Physica A 344, Issue 3/4 (2004); Nonextensive Entropy - Interdisciplinary Applications, edited by M. Gell-Mann, C. Tsallis (Oxford University Press, New York, 2004); Complexity, Metastability and Nonextensivity, edited by C. Beck, G. Benedek, A. Rapisarda, C. Tsallis (World Scientific, Singapore, 2005); Nonextensive Statistical Mechanics: New Trends, New Perpectives, edited by J.P. Boon, C. Tsallis, Europhys. News 36 (2005)

    Google Scholar 

  • V. Latora, M. Baranger, A. Rapisarda, C. Tsallis, Phys. Lett. A 273, 97 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  • M. Antoni, S. Ruffo, Phys. Rev. E 52, 2361 (1995)

    Article  ADS  Google Scholar 

  • C. Anteneodo, C. Tsallis , Phys. Rev. Lett. 80, 5313 (1998)

    Article  ADS  Google Scholar 

  • F.D. Nobre, C. Tsallis, Phys. Rev. E 68, 036115 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  • F.D. Nobre, C. Tsallis, Physica A 344, 587 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  • E.P. Borges, C. Tsallis, Physica A 305, 148 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • V. Latora, A. Rapisarda, S. Ruffo, Phys. Rev. Lett. 80, 692 (1998); V. Latora, A. Rapisarda, S. Ruffo, Physica D 131, 38 (1999); V. Latora, A. Rapisarda, S. Ruffo, Progr. Theor. Phys. Suppl. 139, 204 (2000)

    Article  ADS  Google Scholar 

  • S.A. Cannas, F.A. Tamarit, Phys. Rev. B 54, R12661 (1996)

  • F. Tamarit, C. Anteneodo, Phys. Rev. Lett. 84, 208 (2000)

    Article  ADS  Google Scholar 

  • B.J.C. Cabral, C. Tsallis, Phys. Rev. E 66, 065101(R) (2002)

    Article  ADS  Google Scholar 

  • E. Ott, Chaos in dynamical systems (Cambridge University Press, Cambridge, 1993)

  • C. Tsallis, A. Rapisarda, V. Latora, F. Baldovin, in Dynamics and Thermodynamics of Systems with Long-Range Interactions, edited by T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens, Lecture Notes in Physics 602, 140 (Springer, Berlin, 2002)

  • L.G. Moyano, A.P. Majtey, C. Tsallis, Complexity, Metastability and Nonextensivity, edited by C. Beck, G. Benedek, A. Rapisarda, C. Tsallis (World Scientific, Singapore, 2005) 123

  • F. Baldovin, L.G. Moyano, A.P. Majtey, A. Robledo, C. Tsallis, Physica A 340, 205 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  • M. Falcioni, U.M.B. Marconi, A. Vulpiani, Phys. Rev. A 44, 2263 (1991)

    Article  ADS  Google Scholar 

  • F. Baldovin, A. Robledo, Phys. Rev. E 66, 045104(R) (2002); F. Baldovin, A. Robledo, Phys. Rev. E 69, 045202(R) (2004); F. Baldovin, A. Robledo, Europhys. Lett. 60, 518 (2002); see also E. Mayoral, A. Robledo, Physica A 340, 219 (2004); E. Mayoral, A. Robledo, Phys. Rev. E 72, 026209 (2005); H. Hernandez-Saldana, A. Robledo, Physica A (2006), in press [arXiv:cond-mat/0507624]

    Article  ADS  Google Scholar 

  • The q-exponential is defined as exp q(x)≡[1+(1-q)x]1/1-q and its inverse is the q-logarithm, lnq(x)≡(x1-q-1)/(1-q). The usual exponential and logarithm are recovered when q→1

  • A. Robledo, Phys. Lett. A 328, 467 (2004); F. Baldovin, A. Robledo, Phys. Rev. E 72, 066213 (2005)

    Article  ADS  Google Scholar 

  • F.A.B.F. de Moura, U. Tirnakli, M.L. Lyra, Phys. Rev. E 62, 6361 (2000); E.P. Borges, C. Tsallis, G.F.J. Ananos, P.M.C. de Oliveira, Phys. Rev. Lett. 89, 254103 (2002); G.F.J. Ananos, C. Tsallis, Phys. Rev. Lett. 93, 020601 (2004)

    Article  ADS  Google Scholar 

  • U. Tirnakli, C. Tsallis, M.L. Lyra, Eur. Phys. J. B 11, 309 (1999); U. Tirnakli, C. Tsallis, M.L. Lyra, Phys. Rev. E 65, 036207 (2002); U. Tirnakli, Phys. Rev. E 66, 066212 (2002); U. Tirnakli, Physica A 305, 119 (2002); E.P. Borges, U. Tirnakli, Physica D 193, 148 (2004); E.P. Borges, U. Tirnakli, Physica A 340, 227 (2004)

    Article  ADS  Google Scholar 

  • G. Casati, C. Tsallis, F. Baldovin, Europhys. Lett. 72, 355 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  • V. Latora, M. Baranger, Phys. Rev. Lett. 82, 520 (1999)

    Article  ADS  Google Scholar 

  • F. Baldovin, E. Brigatti, C. Tsallis, Phys. Lett. A 320, 254 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • M. Kac, G. Uhlenbeck, P.C. Hemmer, J. Math. Phys. 4, 216 (1963)

    Article  MATH  MathSciNet  Google Scholar 

  • V. Ahlers, R. Zillmer, A. Pikovsky, Phys. Rev. E 63, 036213 (2001)

    Article  ADS  Google Scholar 

  • T. Konishi, K. Kaneko, J. Phys. A 25, 6283 (1992); K. Kaneko, T. Konishi, Physica D 71, 146 (1994)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  • M.-C. Firpo, S. Ruffo, J. Phys. A 34, L511 (2001); D. Moroni, Dynamics and thermodynamics of a variable-range interacting XY model, M. Sc. Thesis, University La Sapienza, Rome, Italy (2000)

  • G. Benettin, L. Galgani, A. Giorgilli, J.M. Strelcyn, Meccanica 15, 21 (1980)

    Article  Google Scholar 

  • C. Anteneodo, Phys. Rev. E 69, 016207 (2004)

    Article  ADS  Google Scholar 

  • This is a consequence of the Oseledec theorem that states that, assuming ergodicity, (almost) any exponential growth tends to an asymptotic value λ0, independently of the orbit and for (almost) all intial conditions; see for example, V.I. Oseledec, Trans. Mosc. Math. Soc. 19, 197 (1968); J.-P. Eckmann, D. Ruelle, Rev. Mod. Phys. 57, 617 (1985)

    Google Scholar 

  • G.M. Zaslavsky, R.Z. Sagdeev, D.A. Usikov, A.A. Chernikov, Weak chaos and quasi-regular patterns (Cambridge University Press, Cambridge, 1991)

  • B.V. Chirikov, Phys. Rep. 52, 263 (1979)

    Article  ADS  MathSciNet  Google Scholar 

  • M.-C. Firpo, Phys. Rev. E 57, 6599 (1998)

    Article  ADS  Google Scholar 

  • C. Anteneodo, R.O. Vallejos, Phys. Rev. E 65, 016210 (2002); R.O. Vallejos, C. Anteneodo, Phys. Rev. E 66, 021110 (2002); R.O. Vallejos, C. Anteneodo, Physica A 340, 178 (2004)

    Article  ADS  Google Scholar 

  • To measure the temperature on the torus one may take in equation (3) the least distance from momentum pi to the average momentum, i.e., min\(\{|p_i(t)-\bar p|, 1-|p_i(t)-\bar p|\}\)

  • A. Pluchino, V. Latora, A. Rapisarda, Physica A 338, 60 (2004)

    Article  ADS  Google Scholar 

  • C. Tsallis, Braz. J. Phys. 29, 1 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Moyano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Moyano, L., Majtey, A. & Tsallis, C. Weak chaos and metastability in a symplectic system of many long-range-coupled standard maps. Eur. Phys. J. B 52, 493–500 (2006). https://doi.org/10.1140/epjb/e2006-00327-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2006-00327-2

PACS.

Navigation