Skip to main content
Log in

Entanglement and transport through correlated quantum dot

  • Solid and Condensed State Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

We study quantum entanglement in a single-level quantum dot in the linear-response regime. The results show, that the maximal quantum value of the conductance 2e2/h not always match the maximal entanglement. The pairwise entanglement between the quantum dot and the nearest atom of the lead is also analyzed by utilizing the Wootters formula for charge and spin degrees of freedom separately. The coexistence of zero concurrence and the maximal conductance is observed for low values of the dot-lead hybridization. Moreover, the pairwise concurrence vanish simultaneously for charge and spin degrees of freedom, when the Kondo resonance is present in the system. The values of a Kondo temperature, corresponding to the zero-concurrence boundary, are also provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • A. Einstein, B. Podolski, N. Rosen, Phys. Rev. 47, 777 (1935)

    Article  MATH  ADS  Google Scholar 

  • See review by C.H. Bennet, D.P. Divincenzo, Nature 404, 247 (2000); M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information (Cambridge, 2000)

    Article  ADS  Google Scholar 

  • S. Sachdev, Quantum Phase Transitions (Cambridge University Press, Cambridge, 2000)

  • A. Osterloh et al., Nature 416, 608 (2002); T.J. Osborne, M.A. Nielsen, Phys. Rev. A 66, 032110 (2002); V. Subrahmanyam, Phys. Rev. A 69, 022311 (2004)

    Article  ADS  Google Scholar 

  • F. Verstraete, M.A. Martin-Delgado, J.I. Cirac, Phys. Rev. Lett. 92, 087201 (2004); M. Popp et al., Phys. Rev. A 71, 042306 (2005)

    Article  ADS  Google Scholar 

  • A.M. Oleś et al., Phys. Rev. Lett. 96, 147205 (2006)

    Article  Google Scholar 

  • J. van Wezel, J. van den Brink, J. Zaanen, Phys. Rev. Lett. 94, 230401 (2005)

    Article  MathSciNet  Google Scholar 

  • J. Schliemann, D. Loss, A.H. MacDonald, Phys. Rev. B 63, 085311 (2001); J. Schliemann et al., Phys. Rev. A 64, 022303 (2001)

    Article  ADS  Google Scholar 

  • P. Zanardi, Phys. Rev. A 65, 042101 (2002); P. Zanardi, X. Wang, J. Phys. A 35, 7947 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  • S.-J. Gu et al., Phys. Rev. Lett. 93, 086402 (2004)

    Article  Google Scholar 

  • A.O. Caldeira, A.J. Leggett, Phys. Rev. Lett. 46, 211 (1981); I.L. Chuang et al., Science 270, 1633 (1995)

    Article  ADS  Google Scholar 

  • M.-S. Choi, R. López, R. Aguado, Phys. Rev. Lett. 95, 067204 (2005); R. López et al., Phys. Rev. B 71, 115312 (2005)

    Article  ADS  Google Scholar 

  • W.K. Wootters, Phys. Rev. Lett. 80, 2245 (1998); S. Hill, W.K. Wootters, Phys. Rev. Lett. 78, 5022 (1997)

    Article  ADS  Google Scholar 

  • P.B. Wiegman, A.M. Tsvelick, Pis'ma ZETF 35, 100 (1982); J. Phys. C 16, 2281 (1983)

    Google Scholar 

  • W. Hofstetter, J. König, H. Schoeller, Phys. Rev. Lett. 87 156803 (2001)

    Google Scholar 

  • Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992); A.-P. Jauho et al., Phys. Rev. B 50, 5528 (1994)

    Article  ADS  Google Scholar 

  • P.S. Cornaglia et al., Phys. Rev. Lett. 93, 147201 (2004)

    Article  Google Scholar 

  • P. Stefański, A. Tagliacozzo, B. Bułka, Phys. Rev. Lett. 93, 186805 (2004); B. Bułka, P. Stefański, Phys. Rev. Lett. 86, 5128 (2001)

    Article  ADS  Google Scholar 

  • T. Rejec, A. Ramšak, Phys. Rev. B 68, 035342 (2003)

    Article  ADS  Google Scholar 

  • T. Rejec, A. Ramšak, Phys. Rev. B 68, 033306 (2003)

    Article  ADS  Google Scholar 

  • A. Rycerz, J. Spałek, Physica B 378-380, 935 (2006)

    Google Scholar 

  • A. Rycerz, J. Spałek, Eur. Phys. J. B 40, 153 (2004); Phys. Rev. B 63, 073101 (2001); Phys. Rev. B 65, 035110 (2002)

    Article  ADS  Google Scholar 

  • E.H. Lieb, Phys. Rev. Lett. 73, 2158 (1994); F. Nakano, J. Phys. A 33, 5429 (2000); J. Phys. A 37, 3979 (2004); for a discussion of boundary condition role in even/odd effect for correlated nanosystems see: A. Rycerz, J. Spałek, Phys. Stat. Sol. (b) 243, 183 (2006)

    Article  ADS  Google Scholar 

  • The notion of the half-filling refers to the entire system composed of a quantum dot and leads, as presented in Figure 1. The average dot occupation 〈nd〉 is determined by the energy level epsilond, and reaches 1 at the particle-hole symmetric point epsilond=-U/2

  • J. Kondo, Prog. Theor. Phys. 28, 846 (1962); J.R. Schrieffer, P.A. Wolf, Phys. Rev. 149, 491 (1966)

    Article  ADS  Google Scholar 

  • The symmetric Kondo temperature for epsilond=-U/2 bean is given by \(T_K=\sqrt{2U\Gamma/\pi^2}\exp(-\pi U/8\Gamma)\), with the impurity level width \(\Gamma=\pi\rho(\epsilon_F)V^2=V^2/\sqrt{4t^2-\epsilon_F}\), where the second equality refers to the tight-binding electrodes shown in Figure 1

  • A.C. Hewson, The Kondo Problem to Heavy Fermions (Cambridge University Press, 1997)

  • J. Spałek, J. Sol. St. Chem. 88, 70 (1990); J. Spałek, A.M. Oleś, J.M. Honig, Phys. Rev. B 28, 6802 (1983)

    Article  ADS  Google Scholar 

  • For an application to the Hubbard dimer, see: S.-S. Deng, S.-J. Gu, H.-Q. Lin, Chin. Phys. Lett. 22, 804 (2005); the generalization for any two neighboring sites of one-dimensional system with one orbital per site is straightforward

    Article  Google Scholar 

  • See, e.g. C.W.J. Beenakker, arXiv:cond-mat/0508488, to be published in Quantum Computers, Algorithms and Chaos, Int. School of Phys, “Enrico Fermi”, Vol. 162, and references therein

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rycerz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rycerz, A. Entanglement and transport through correlated quantum dot. Eur. Phys. J. B 52, 291–296 (2006). https://doi.org/10.1140/epjb/e2006-00313-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2006-00313-8

PACS.

Navigation