Skip to main content
Log in

Braid theory and Zipf-Mandelbrot relation used in microparticle dynamics

  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

A study is presented of the dynamics of a few body system of microparticles by using rank-ordering statistics in order to gain insight in the magneto-rheological properties of ferrofluids. This dynamical system is made up of micrometer sized plastic spheres dispersed in a ferrofluid driven by external magnetic fields. The world lines of the microspheres are captured and the dynamical modes are described by mathematical braid theory. Rank-ordering statistics on these modes shows a wide power law region consistent with the Zipf-Mandelbrot relation. We have also performed numerical simulations of the experimental system which show results in agreement with the observations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R.E. Rosensweig, Ferrohydrodynamics (Cambridge University Press, New York, 1985)

  • Magnetic fluids and application handbook, edited by B. Berkovski, V. Bashtovoy (Begel House Inc., New York, 1996)

  • K. Wollny, J. Läuger, S. Huck, Appl. Rheol. 12, 25 (2002)

    Google Scholar 

  • J.P. McTague, J. Chem. Phys. 51, 133 (1969)

    Article  Google Scholar 

  • J. Embs, H.W. Müller, C. Wagner, K. Knorr, M. Lücke, Phys. Rev. E 61, R2196 (2000)

  • M.I. Shliomis, Soviet Phys. JETP 34, 1291 (1972).

    Google Scholar 

  • S. Odenbach, H. Störk, J. Magn. Magn. Mater. 183, 188 (1998)

    Article  ADS  Google Scholar 

  • F. Gazeau, C. Baravian, J.-C. Bacri, R. Perzynski, M.I. Shliomis, Phys. Rev. E 56 614 (1997)

    Google Scholar 

  • A. Zeuner, R. Richter, I. Rehberg, Phys. Rev. E 58 6287 (1998)

  • A.T. Skjeltorp, Phys. Rev. Lett. 51, 2306 (1983)

    Article  ADS  Google Scholar 

  • P. Pieranski, S. Clausen, G. Helgesen, A.T. Skjeltorp, Phys. Rev. Lett. 77, 1620 (1996)

    Article  ADS  Google Scholar 

  • C. Moore, Phys. Rev. Lett. 70, 3675 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • M.A. Berger, Phys. Rev. Lett. 70, 705 (1993)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • P. L. Boyland, H. Aref, M.A. Stremler, J. Fluid Mech. 403, 277 (2000)

    Article  MATH  MathSciNet  ADS  Google Scholar 

  • An introduction to the Geometry and Topology of Fluid Flows, edited by R.L. Ricca (NATO ASI Series II, Kluwer, 2001), Vol. 47

  • E.J. Gumbel, Statistics of Extremes (Columbia University Press, New York, 1958)

  • G.K. Zipf, Human Behavior and The Principle of Least Effort (Addison-Wesley Press, Massachusetts, 1949)

  • D. Sornette, L. Knopoff, Y.Y. Kagan, C. Vanneste, J. Geophys. Res. 101, 13883 (1996)

    Article  ADS  Google Scholar 

  • R.N. Mantegna, S.V. Buldyrev, A.L. Goldberger, S. Havlin, C.-K. Peng, M. Simons, H.E. Stanley, Phys. Rev. Lett. 73, 3169 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  • B. Mandelbrot, Word 10, 1 (1954)

    Google Scholar 

  • B.B. Mandelbrot, The Fractal Geometry of Nature (W.H. Freeman, New York, 1982)

  • C.E. Shannon, Bell Syst. Tech. 27, 379 (1948)

    MathSciNet  Google Scholar 

  • J. Ugelstad, P.C. Mørk, K. Herder Kaggerud, T. Ellingsen, A. Berge, Adv. Colloid Int. Sci. 13, 101 (1980)

    Article  Google Scholar 

  • Type EMG 909 from Ferrofluidics GmbH, Hohes Gestade 14, 72622 Nürtingen, Germany, with susceptibility χ= 0.8, saturation magnetization Ms = 20 mT, viscosity η= 6 ×10-3 N s m-2, and density ρ= 1020 kg m-3.

  • S. Clausen, G. Helgesen, A.T. Skjeltorp, Int. J. Bifurcation and Chaos 8, 1383 (1998)

    Article  MATH  Google Scholar 

  • G. Helgesen, P. Pieranski, A.T. Skjeltorp, Phys. Rev. A 42, 7271 (1990)

    Article  ADS  Google Scholar 

  • C.C. Adams, The Knot Book (W.H. Freeman and Company, 1994)

  • F.A. Garside, Quart. J. Math. 20, 235 (1967)

    MathSciNet  Google Scholar 

  • E.A. Elrifai, H.R. Morton, Quart. J. Math. 45, 479 (1994)

    MATH  MathSciNet  Google Scholar 

  • B.B. Mandelbrot, in Proceedings of symposia in applied mathematics vol. XII, edited by R. Jakobson (New York: American Mathematical Society, 1961)

  • K.D.L. Kristiansen, Ph.D. thesis, University of Oslo, 2005

  • K.D.L. Kristiansen, G. Helgesen, A.T. Skjeltorp, Physica A 335, 413 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  • E.R. Dufresne, T.M. Squires, M.P. Brenner, D.G. Grier, Phys. Rev. Lett. 85, 3317 (2000)

    Article  ADS  Google Scholar 

  • I. Kanter, D.A. Kessler, Phys. Rev. Lett. 74, 4559 (1995)

    Article  ADS  Google Scholar 

  • C.E. Shannon, Bell Syst. Tech. 30, 50 (1950)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. de Lange Kristiansen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Lange Kristiansen, K., Helgesen, G. & Skjeltorp, A. Braid theory and Zipf-Mandelbrot relation used in microparticle dynamics. Eur. Phys. J. B 51, 363–371 (2006). https://doi.org/10.1140/epjb/e2006-00241-7

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2006-00241-7

PACS.

Navigation