The structural and electronic properties of compound SnmOn clusters studied by the Density Functional Theory

Abstract.

The purpose of this study is the assessment of the properties of compound SnmOn clusters (m=1, 2, 3, 4 and n=1,..,10) and is justified by the theoretical and practical importance of the crystalline stannic oxides and of the related silicon-oxygen systems. The optimized structure is obtained from the minimization of the total energy evaluated using the Density Functional Theory. The quantities analyzed are the cluster structure, its binding energy, the spatial distribution of the electronic charge and the density of states. This analysis indicates that the cluster structure consists on two approximately separate sublattices. In agreement with this central feature, the size dependence of the parameters of the electronic charge is well described by superposing the corresponding values for the elemental clusters.

This is a preview of subscription content, access via your institution.

References

  1. W. Andreoni, G. Galli, M. Tosi, Phys. Rev. Lett. 55, 1734 (1985)

    Article  ADS  Google Scholar 

  2. A. Zunger, Phys. Rev. B 22, 5839 (1980)

    Article  ADS  Google Scholar 

  3. B.K. Rao, P. Jena, Phys. Rev. B 37, 2867 (1988)

    Article  ADS  Google Scholar 

  4. S.K. Nayak, S.N. Khanna, P. Jena, Phys. Rev. B 57, 3787 (1988)

    Article  ADS  Google Scholar 

  5. S. Nagase, Pure and Appl. Chem. 65, 4, 7, 675 (1993)

    Google Scholar 

  6. A.I. Boldyrev, J. Simons, J. Phys. Chem. 97, 5875 (1993)

    Article  Google Scholar 

  7. S. Nagase, K. Kobayashi, Chem. Phys. Lett. 187, 3, 291 (1991)

    Article  Google Scholar 

  8. M.R. Pederson, W.E. Pickett, S.C. Erwin, Phys. Rev. B 48, 17400 (1993)

    Article  ADS  Google Scholar 

  9. A.M. Mazzone, Europhys. Lett. 35, 13 (1996)

    Article  ADS  Google Scholar 

  10. V. Kumar, A.B. Singh, Y. Kawazoe, Nanoletters 4, 677 (2004)

    Google Scholar 

  11. M. Launay, F. Boucher, P. Moreau, Phys. Rev. B 69, 35101 (2004)

    Article  ADS  Google Scholar 

  12. A.M. Mazzone, Comp. Mat. Science 21, 211 (2001); and also Phil. Mag. Lett. 82, 99 (2002); ibid. 84, 275 (2004)

    ADS  Google Scholar 

  13. E.L. Peltzer Blanca', A. Svane, N.E. Christensen, C.O. Rodriguez, O.M. Capannini, M.S. Moreno, Phys. Rev. B 48, 15712 (1993)

    Article  ADS  Google Scholar 

  14. W. Dazhi, W. Shulin, C. Jun, Z. Suyan, L. Fangqing, Phys. Rev. B 49, 14282 (1994)

    Article  ADS  Google Scholar 

  15. J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002)

    Article  ADS  Google Scholar 

  16. A. Aguado, Phys. Rev. B 67, 212204 (1981)

    Google Scholar 

  17. M. Meyer, G. Onida, M. Palummo, L. Reining, Phys. Rev. B 64, 45119 (2001)

    Article  ADS  Google Scholar 

  18. M. Melle-Franco, G. Pacchioni, Surf. Sci. 461, 54 (2000)

    Article  Google Scholar 

  19. M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S.J. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, J. Comp. Chem. 14, 1347 (1993)

    Article  Google Scholar 

  20. D. Dai, K. Balasubramanian, J. Phys. Chem. 100, 19321 (1996)

    Article  Google Scholar 

  21. MOPAC Quantum Chemistry Program Exchange: Program Number 571. Other information can be found at the web site www.indiana.edu

  22. J.P. Stewart, J. Comp. Chem. 10, 209 (1989)

    Article  Google Scholar 

  23. Y.C. Kim, M.E. Fisher, E. Luijten, Phys. Rev. Lett. 91, 651, 2003

    Google Scholar 

  24. K.A. Jackson, M. Hiroi, I. Chauduri, T. Fraunenheim, A.A. Shvartsburg, Phys. Rev. Lett. 93, 13401 (2004)

    Article  ADS  Google Scholar 

  25. K. Balasubramanian, K.S. Pitzer, J. Chem. Phys. 78, 321 (1985)

    MathSciNet  Article  ADS  Google Scholar 

  26. G. Pacchioni, Mol. Phys. 55, 211 (1985)

    Article  Google Scholar 

  27. Zhong-Yi Lu, Cai-Zhuang Wang, Kai-Ming Ho, Phys. Rev. B 61, 2329 (2000)

    Article  ADS  Google Scholar 

  28. C. Majumder, V. Kumar, H. Mizuseki, Y. Kawazoe, Phys. Rev. B 64, 233405 (2001)

    Article  ADS  Google Scholar 

  29. E. Wimmer, H. Krakauer, M. Weinert, A.J. Freeman, Phys. Rev. B 2, 864 (1981)

    Article  ADS  Google Scholar 

  30. G.S. Painter, F.W. Averill, Phys. Rev. B 26, 1781 (1982)

    Article  ADS  Google Scholar 

  31. V. Aquilanti, D. Ascenzi, M. Bartolomei, D. Cappelletti, E. Cavalli, M. de Castro Vitores, F. Pirani, Phys. Rev. Lett. 82, 69 (1999)

    Article  ADS  Google Scholar 

  32. J.P. Perdew, A. Savin, K. Burke, Phys. Rev. B 51, 4531 (1995)

    ADS  Google Scholar 

  33. D.C. Chrzan, L.M. Falicov, Phys. Rev. B 37, 3894 (1988)

    Article  ADS  Google Scholar 

  34. J.R. Chelikowsky, D.J. Chadi, M. Biggeli, Phys. Rev. B 64, R2051 (2000)

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. M. Mazzone.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mazzone, A., Morandi, V. The structural and electronic properties of compound SnmOn clusters studied by the Density Functional Theory. Eur. Phys. J. B 51, 307–313 (2006). https://doi.org/10.1140/epjb/e2006-00227-5

Download citation

PACS.

  • 61.46.Bc Clusters
  • 78.20.Bh Theory, models, and numerical simulation
  • 71.15.Mb Density functional theory, local density approximation, gradient and other corrections