Olami-Feder-Christensen model on different networks

Abstract.

We investigate numerically the Self Organized Criticality (SOC) properties of the dissipative Olami-Feder-Christensen model on small-world and scale-free networks. We find that the small-world OFC model exhibits self-organized criticality. Indeed, in this case we observe power law behavior of earthquakes size distribution with finite size scaling for the cut-off region. In the scale-free OFC model, instead, the strength of disorder hinders synchronization and does not allow to reach a critical state.

This is a preview of subscription content, log in to check access.

References

  1. E. Stanley, Introduction to Phase Transitions and Critical Phenomena (Oxford University Press, 1987)

  2. P. Bak, C. Tang, K. Wiesenfeld, Phys. Rev. Lett. 59, 381 (1987); Phys. Rev. A. 38, 364 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  3. P. Bak, How Nature Works: The Science of Self-Organized Criticality (Copernicus, New York, 1996)

  4. H. Jensen, Self-Organized Criticality (Cambridge Univ. Press, New York, 1998)

  5. Z. Olami, H.J.S. Feder, K. Christensen, Phys. Rev. Lett. 68, 1244 (1992); K. Christensen, Z. Olami, Phys. Rev. A 46, 1829 (1992)

    Article  ADS  Google Scholar 

  6. W. Klein, J. Rundle, Phys. Rev. Lett. 71, 1288 (1993); K. Christensen, Phys. Rev. Lett. 71, 1289 (1993)

    Article  ADS  Google Scholar 

  7. J.X. Carvalho, C.P.C. Prado, Phys. Rev. Lett. 84, 4006 (2000)

    Article  ADS  Google Scholar 

  8. K. Christensen, D. Hamon, H.J. Jensen, S. Lise, Phys. Rev. Lett. 87, 039801 (2001); J.X. Carvalho, C.P.C. Prado, Phys. Rev. Lett. 87, 039802 (2001)

    Article  ADS  Google Scholar 

  9. S. Lise, M. Paczuski, Phys. Rev. E, 63, 036111 (2001)

    Google Scholar 

  10. S. Lise, M. Paczuski, Phys. Rev. Lett. 88, 228301 (2002)

    Article  ADS  Google Scholar 

  11. F. Caruso, V. Latora, A. Rapisarda, B. Tadic, in Proceedings of 31st Workshop of the International School of Solid State Physics: Complexity, Metastability and Nonextensivity, Erice, Italy, edited by C. Beck, G. Benedek, A. Rapisarda, C. Tsallis, The Science and Culture Series Physics (World Scientific, 2005), pp. 355-360

  12. S. Abe, N. Suzuki, Europhys. Lett. 65, 581 (2004) and reference therein

    Article  ADS  Google Scholar 

  13. S. Abe, N. Suzuki, J. Geophys. Res. [Solid Earth] 108 (B2), 2113 (2003)

    Article  ADS  Google Scholar 

  14. J. Davidsen, M. Paczuski, Phys. Rev. Lett. 94, 048501 (2005) and reference therein

    Article  ADS  Google Scholar 

  15. A.L. Barabási, R. Albert, Science 286, 509 (1999)

    Article  MathSciNet  Google Scholar 

  16. S. Lise, M. Paczuski, Phys. Rev. E 64, 046111 (2001)

    Article  ADS  Google Scholar 

  17. S. Lise, H.J. Jensen, Phys. Rev. Lett. 76, 2326 (1996)

    Article  ADS  Google Scholar 

  18. M.L. Chabanol, V. Hakim, Phys. Rev. E 56, 2343 (1997)

    Article  ADS  Google Scholar 

  19. H.M. Broker, P. Grassberger, Phys. Rev. E 56, 3944 (1997)

    Article  ADS  Google Scholar 

  20. O. Kinouchi, S.T.R. Pinho, C.P.C. Prado, Phys. Rev. E 58, 3997 (1998)

    Article  ADS  Google Scholar 

  21. A.A. Middleton, C. Tang, Phys. Rev. Lett. 74, 742 (1995)

    Article  ADS  Google Scholar 

  22. J.E.S. Socolar, G. Grinstein, C. Jayaprakash, Phys. Rev. E 47, 2366 (1993)

    Article  ADS  Google Scholar 

  23. P. Grassberger, Phys. Rev. E 49, 2436 (1994)

    Article  ADS  Google Scholar 

  24. D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  25. More in general in Watts and Strogatz original definition a small-world network is characterized not only by a small value of L, but also by an high clustering coefficient

  26. R.S. Stein, Nature 402, 605 (1999)

    Article  ADS  Google Scholar 

  27. P. Tosi, V. De Rubeis, V. Loreto, L. Pietronero, Ann. Geophys. 47, 1849 (2004)

    Google Scholar 

  28. Y.Y. Kagan, D.D. Jackson, Geophys. J. Int. 104, 117 (1991)

    Google Scholar 

  29. D.P. Hill et al., Science 260, 1617 (1993)

    Google Scholar 

  30. L. Crescentini, A. Amoruso, R. Scarpa, Science 286, 2132 (1999)

    Article  Google Scholar 

  31. T. Parsons, J. Geophys. Res. 107, 2199 (2001)

    Article  Google Scholar 

  32. M.S. Mega, P. Allegrini, P. Grigolini, V. Latora, L. Palatella, A. Rapisarda, S. Vinciguerra, Phys. Rev. Lett. 90, 188501 (2003); F. Caruso, S. Vinciguerra, V. Latora, A. Rapisarda, S. Malone, physics/0311049, Fractals (2006), in press

    Article  ADS  Google Scholar 

  33. K.-I. Goh, D.-S. Lee, B. Kahng, D. Kim, Phys. Rev. Lett. 91, 148701 (2003)

    Article  ADS  Google Scholar 

  34. D.J. Watts, Small Worlds (Princeton Univ. Press, Princeton, New Jersey, 1999)

  35. H. Ceva, Phys. Rev. E 52, 154 (1995)

    Article  ADS  Google Scholar 

  36. M. Mousseau, Phys. Rev. Lett. 77, 968 (1996)

    Article  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Caruso.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Caruso, F., Latora, V., Pluchino, A. et al. Olami-Feder-Christensen model on different networks. Eur. Phys. J. B 50, 243–247 (2006). https://doi.org/10.1140/epjb/e2006-00110-5

Download citation

PACS.

  • 05.65.+b Self-organized systems
  • 45.70.Ht Avalanches
  • 89.75.Da Systems obeying scaling laws
  • 91.30.Bi Seismic sources (mechanisms, magnitude, moment frequency spectrum)