Topological patterns in street networks of self-organized urban settlements

  • J. Buhl
  • J. Gautrais
  • N. Reeves
  • R. V. Solé
  • S. Valverde
  • P. Kuntz
  • G. Theraulaz
Interdisciplinary Physics

Abstract.

Many urban settlements result from a spatially distributed, decentralized building process. Here we analyze the topological patterns of organization of a large collection of such settlements using the approach of complex networks. The global efficiency (based on the inverse of shortest-path lengths), robustness to disconnections and cost (in terms of length) of these graphs is studied and their possible origins analyzed. A wide range of patterns is found, from tree-like settlements (highly vulnerable to random failures) to meshed urban patterns. The latter are shown to be more robust and efficient.

PACS.

89.75.Hc Networks and genealogical trees  89.40.Bb Land transportation 89.65.Lm Urban planning and construction  

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Batty, P. Longley, Fractal cities: a geometry of form and function (Academic Press, London, San Diego, 1994) Google Scholar
  2. S. Kostov, The city shaped: Urban patterns and meaning through history (Thames and Hudson, London, 1991) Google Scholar
  3. H.A. Makse, J.S. de Andrade, M. Batty, S. Havlin, H.E. Stanley, Phys. Rev. E 58, 7054 (1998) CrossRefADSGoogle Scholar
  4. S. Manrubia, D.H. Zanette, R.V. Solé, Fractals 7, 1 (1999) MATHGoogle Scholar
  5. R. Carvalho, A. Penn, Physica A 332, 539 (2004) CrossRefADSGoogle Scholar
  6. These non-globally-planned urban morphologies were defined and regrouped by N. Reeves under the acronym Mesap for “Morphologies Evolutives Sans Adressage Préalable” (Evolving morphologies without pre-defined addresses) Google Scholar
  7. F. Schweitzer, W. Ebeling, H. Rosé, O. Weiss, Evol. Comp. 5, 419 (1998) Google Scholar
  8. M.T. Gastner, M.E.J. Newman, e-print arXiv:cond-mat/0409702 Google Scholar
  9. M.T. Gastner, M.E.J. Newman, e-print arXiv:cond-mat/0407680 Google Scholar
  10. F. Schweitzer, Brownian Agents and Active Particles (Springer, Berlin, 2001) Google Scholar
  11. M. Rosvall, A. Trusina, P. Minnhagen, K. Sneppen, Phys. Rev. Lett. 94, 028701 (2005) CrossRefADSGoogle Scholar
  12. B. Jiang, C. Claramunt, Env. Planning B 31, 151 (2004) CrossRefGoogle Scholar
  13. V. Kalapala, V. Sanwalani, A. Clauset, C. Moore, e-print arXiv:physics/0510198 Google Scholar
  14. T. Nishizeki, N. Chiba, Planar Graphs; Theory and Algorithms (North-Holland, Amsterdam, 1988) Google Scholar
  15. H. Caminos, J. Turner, J. Steffian, Urban Dwelling Environments: An Elementary Survey of Settlements for the Study of Design Determinants (MIT Press, Cambridge, Massachussetts, 1969) Google Scholar
  16. B. Bollobas, Random graphs, 2nd edn. (Cambridge University Press, Cambridge, 2002) Google Scholar
  17. J. Buhl, J. Gautrais, R.V. Solé, P. Kuntz, S. Valverde, J.L. Deneubourg, G. Theraulaz, Eur. Phys. J. B 42, 123 (2004) CrossRefADSGoogle Scholar
  18. A. Denise, M. Vasconcellos, D.J.A. Welsh, Congressus Numerantium 113, 61 (1996) MATHMathSciNetGoogle Scholar
  19. D. Osthus, H.J. Promel, A. Taraz, J. Comb. Theory B 88, 119 (2003) CrossRefMATHMathSciNetGoogle Scholar
  20. E.W. Dijkstra, Numer. Math. 1, 269 (1959) CrossRefMATHMathSciNetGoogle Scholar
  21. J.B. Kruskal, Proc. Amer. Math. Soc. 2, 48 (1956) CrossRefMathSciNetGoogle Scholar
  22. D. Cheriton, R.E. Tarjan, SIAM J. Computing 5, 724 (1976) CrossRefMATHMathSciNetGoogle Scholar
  23. M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf, Computational geometry, 2nd rev. edn. (Springer, Berlin, 2000) Google Scholar
  24. C. Levcopoulos, A. Lingas, Algorithmica 2 (1987) Google Scholar
  25. M.E.J. Newman, Phys. Rev. Lett. 89, 208701 (2002) CrossRefADSGoogle Scholar
  26. V. Latora, M. Marchiori, Phys. Rev. Lett. 87, 198701 (2001) CrossRefADSGoogle Scholar
  27. R. Albert, H. Jeong, A.L. Barabasi, Nature 406, 378 (2000) CrossRefADSGoogle Scholar
  28. P. Holme, B.J. Kim, C.N. Yoon, S.K. Han, Phys. Rev. E 65, 056109 (2002) CrossRefADSGoogle Scholar
  29. H. Jeong, S.P. Mason, A.L. Barabasi, Z.N. Oltvai, Nature 411, 41 (2001) CrossRefADSMathSciNetGoogle Scholar
  30. R.V. Solé, J.M. Montoya, Proc. R. Soc. Lond. B 268, 2039 (2001) CrossRefGoogle Scholar
  31. J.A. Dunne, R.J. Williams, N.D. Martinez, Ecol. Lett. 5, 558 (2002) CrossRefGoogle Scholar
  32. V. Latora, M. Marchiori, Physica A 314, 109 (2002) CrossRefADSMATHGoogle Scholar
  33. V. Latora, M. Marchiori, Eur. Phys. J. B 32, 249 (2003) CrossRefADSGoogle Scholar
  34. A. Cardillo, S. Scellato, V. Latora, S. Porta, e-print arXiv:physics/0510162 Google Scholar
  35. D.J. Watts, Small Worlds: The Dynamics of Networks Between Order and Randomness (Princeton University Press, Princeton, 1999) Google Scholar

Copyright information

© EDP Sciences/Società Italiana di Fisica/Springer-Verlag 2006

Authors and Affiliations

  • J. Buhl
    • 1
  • J. Gautrais
    • 1
  • N. Reeves
    • 2
  • R. V. Solé
    • 3
  • S. Valverde
    • 3
  • P. Kuntz
    • 4
  • G. Theraulaz
    • 1
  1. 1.Centre de Recherches sur la Cognition Animale, CNRS UMR 5169, Université Paul SabatierToulouse Cedex 4France
  2. 2.Laboratoire NXI GESTATIO, Département de Design, Université du Québec à MontréalMontréal QuébecCanada
  3. 3.ICREA-Complex Systems Lab,Universitat Pompeu FabraBarcelonaSpain
  4. 4.Laboratoire d'Informatique Nantes-Atlantique, Université de NantesNantes Cedex 03France

Personalised recommendations