Skip to main content

Advertisement

Log in

Topological patterns in street networks of self-organized urban settlements

  • Interdisciplinary Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

Many urban settlements result from a spatially distributed, decentralized building process. Here we analyze the topological patterns of organization of a large collection of such settlements using the approach of complex networks. The global efficiency (based on the inverse of shortest-path lengths), robustness to disconnections and cost (in terms of length) of these graphs is studied and their possible origins analyzed. A wide range of patterns is found, from tree-like settlements (highly vulnerable to random failures) to meshed urban patterns. The latter are shown to be more robust and efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • M. Batty, P. Longley, Fractal cities: a geometry of form and function (Academic Press, London, San Diego, 1994)

  • S. Kostov, The city shaped: Urban patterns and meaning through history (Thames and Hudson, London, 1991)

  • H.A. Makse, J.S. de Andrade, M. Batty, S. Havlin, H.E. Stanley, Phys. Rev. E 58, 7054 (1998)

    Article  ADS  Google Scholar 

  • S. Manrubia, D.H. Zanette, R.V. Solé, Fractals 7, 1 (1999)

    MATH  Google Scholar 

  • R. Carvalho, A. Penn, Physica A 332, 539 (2004)

    Article  ADS  Google Scholar 

  • These non-globally-planned urban morphologies were defined and regrouped by N. Reeves under the acronym Mesap for “Morphologies Evolutives Sans Adressage Préalable” (Evolving morphologies without pre-defined addresses)

  • F. Schweitzer, W. Ebeling, H. Rosé, O. Weiss, Evol. Comp. 5, 419 (1998)

    Google Scholar 

  • M.T. Gastner, M.E.J. Newman, e-print arXiv:cond-mat/0409702

  • M.T. Gastner, M.E.J. Newman, e-print arXiv:cond-mat/0407680

  • F. Schweitzer, Brownian Agents and Active Particles (Springer, Berlin, 2001)

  • M. Rosvall, A. Trusina, P. Minnhagen, K. Sneppen, Phys. Rev. Lett. 94, 028701 (2005)

    Article  ADS  Google Scholar 

  • B. Jiang, C. Claramunt, Env. Planning B 31, 151 (2004)

    Article  Google Scholar 

  • V. Kalapala, V. Sanwalani, A. Clauset, C. Moore, e-print arXiv:physics/0510198

  • T. Nishizeki, N. Chiba, Planar Graphs; Theory and Algorithms (North-Holland, Amsterdam, 1988)

  • H. Caminos, J. Turner, J. Steffian, Urban Dwelling Environments: An Elementary Survey of Settlements for the Study of Design Determinants (MIT Press, Cambridge, Massachussetts, 1969)

  • B. Bollobas, Random graphs, 2nd edn. (Cambridge University Press, Cambridge, 2002)

  • J. Buhl, J. Gautrais, R.V. Solé, P. Kuntz, S. Valverde, J.L. Deneubourg, G. Theraulaz, Eur. Phys. J. B 42, 123 (2004)

    Article  ADS  Google Scholar 

  • A. Denise, M. Vasconcellos, D.J.A. Welsh, Congressus Numerantium 113, 61 (1996)

    MATH  MathSciNet  Google Scholar 

  • D. Osthus, H.J. Promel, A. Taraz, J. Comb. Theory B 88, 119 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • E.W. Dijkstra, Numer. Math. 1, 269 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  • J.B. Kruskal, Proc. Amer. Math. Soc. 2, 48 (1956)

    Article  MathSciNet  Google Scholar 

  • D. Cheriton, R.E. Tarjan, SIAM J. Computing 5, 724 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  • M. de Berg, M. van Kreveld, M. Overmars, O. Schwarzkopf, Computational geometry, 2nd rev. edn. (Springer, Berlin, 2000)

  • C. Levcopoulos, A. Lingas, Algorithmica 2 (1987)

  • M.E.J. Newman, Phys. Rev. Lett. 89, 208701 (2002)

    Article  ADS  Google Scholar 

  • V. Latora, M. Marchiori, Phys. Rev. Lett. 87, 198701 (2001)

    Article  ADS  Google Scholar 

  • R. Albert, H. Jeong, A.L. Barabasi, Nature 406, 378 (2000)

    Article  ADS  Google Scholar 

  • P. Holme, B.J. Kim, C.N. Yoon, S.K. Han, Phys. Rev. E 65, 056109 (2002)

    Article  ADS  Google Scholar 

  • H. Jeong, S.P. Mason, A.L. Barabasi, Z.N. Oltvai, Nature 411, 41 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  • R.V. Solé, J.M. Montoya, Proc. R. Soc. Lond. B 268, 2039 (2001)

    Article  Google Scholar 

  • J.A. Dunne, R.J. Williams, N.D. Martinez, Ecol. Lett. 5, 558 (2002)

    Article  Google Scholar 

  • V. Latora, M. Marchiori, Physica A 314, 109 (2002)

    Article  ADS  MATH  Google Scholar 

  • V. Latora, M. Marchiori, Eur. Phys. J. B 32, 249 (2003)

    Article  ADS  Google Scholar 

  • A. Cardillo, S. Scellato, V. Latora, S. Porta, e-print arXiv:physics/0510162

  • D.J. Watts, Small Worlds: The Dynamics of Networks Between Order and Randomness (Princeton University Press, Princeton, 1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Buhl.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buhl, J., Gautrais, J., Reeves, N. et al. Topological patterns in street networks of self-organized urban settlements. Eur. Phys. J. B 49, 513–522 (2006). https://doi.org/10.1140/epjb/e2006-00085-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2006-00085-1

PACS.

Navigation