Skip to main content
Log in

Evolving network – simulation study

From regular lattice to scale free network

  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

The Watts-Strogatz algorithm of transferring the square lattice to a small world network is modified by introducing preferential rewiring constrained by connectivity demand. The evolution of the network is two-step: sequential preferential rewiring of edges controlled by p and updating the information about changes done. The evolving system self-organizes into stationary states. The topological transition in the graph structure is noticed with respect to p. Leafy phase – a graph formed by multiple connected vertices (graph skeleton) with plenty of leaves attached to each skeleton vertex emerges when p is small enough to pretend asynchronous evolution. Tangling phase where edges of a graph circulate frequently among low degree vertices occurs when p is large. There exist conditions at which the resulting stationary network ensemble provides networks which degree distribution exhibit power-law decay in large interval of degrees.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R. Albert, A.-L. Barabasi, Rev. Mod. Phys. 74, 47 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  • S.N. Dorogovtsev, J.F.F. Mendes, Adv. Phys. 51, 1079 (2002)

    Article  ADS  Google Scholar 

  • M.E.J. Newman, SIAM Rev. 45, 167 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  • Complex Networks, edited by E. Ben-Naim, H. Frauenfelder, Z. Toroczkai, (Springer, Berlin, 2004)

  • D.J. Watts, S.H. Strogatz, Nature 393, 440 (1998)

    Article  ADS  Google Scholar 

  • M.E.J. Newman, Pareto laws, Pareto distributions, Zipf's law, e-print arXiv:cond-mat/0412004 (2005)

  • M. Gitterman, J. Phys. A 33, 8373 (2000); B.J. Kim, H. Hong, P. Holme, G.S. Jeon, P. Minnhagen, M.Y. Choi, Phys. Rev. E 64, 056135 (2001); M.B. Hastings, Phys. Rev. Lett. 91, 098701 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • C.P. Herrero, Phys. Rev. E 65, 0566110 (2002); C.P. Herrero, Phys. Rev. E 69, 067109 (2004)

    Article  Google Scholar 

  • Jian-Yang Zhu, Han Zhu, Phys. Rev. E 67, 026125 (2003)

    Article  ADS  Google Scholar 

  • A. Aleksiejuk, J.A. Holyst, D. Stauffer, Physica A 310, 260 (2002); M.A. Sumour, M.M. Shabat, D. Stauffer, Absence of ferromagnetism in Ising model on directed Barabasi-Albert network, e-print arXiv:cond-mat/05044660

    Article  ADS  MATH  Google Scholar 

  • A.V. Goltsev, S.N. Dorogovtsev, J.F.F. Mendes, Phys. Rev. E 67, 026123 (2003); S.N. Dorogovtsev, A.V. Goltsev, J.F.F. Mendes, Phys. Rev. E 66, 016104 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  • S.N. Dorogovtsev, J.F.F. Mendes, A.N. Samukhin, Nucl. Phys. B 666, 396 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • R.F. i Cancho, Ch. Janssen, R.V. Sole, Phys. Rev. E 64, 046119 (2001); M.A. Novotny, S.M. Wheeler, On The possibility of Quasi Small-World Nanomaterials, e-print arXiv:cond-mat/0308602

    Article  ADS  Google Scholar 

  • L.F. Lago-Fernandez, R. Huerta, F. Corbacho, J.A. Siguenza, Phys. Rev. Lett. 84, 2758 (2000)

    Article  ADS  Google Scholar 

  • N. Mathias, V. Gopal, Phys. Rev. E 63, 021117 (2001)

    Article  ADS  Google Scholar 

  • Ch. Cherniak, Trends in Neurosciences 18, 552 (1995)

    Article  Google Scholar 

  • D. Makowiec, in Cellular Automata, edited by P.M.B. Slot, B. Chopard, A.G. Hoestra (Springer-Verlag, 2004), p. 141

  • D. Makowiec, New challenges in cellular automata due to network topology, e-print arXiv:cond-mat/0412082

  • D. Makowiec, Acta Phys. Pol. B 36, 1705 (2005)

    ADS  Google Scholar 

  • M.E. Newman, M. Girvan, Phys. Rev. E 69, 026113 (2004)

    Article  ADS  Google Scholar 

  • M.E. Newman, in Complex Systems, edited by E. Ben-Naim, H. Frauenfelder, Z. Toroczkai (Springer, Berlin, 2004), p. 337

  • P. Erdös, A. Rényi, Math. Inst. Hung. Acad. Sci. 5, 7 (1960)

    Google Scholar 

  • I. Farkas, I. Derenyi, G. Palla, T. Viscek, in Complex Networks edited by E. Ben-Naim, H. Frauenfelder, Z. Toroczkai (Springer, Berlin, 2004), p.163

  • Z. Burda, J.D. Correida, A. Krzywicki, Phys. Rev. E 64, 046118 (2001)

    Article  ADS  Google Scholar 

  • J. Berg, M. Lässing, Phys. Rev. Lett. 89, 228701 (2002)

    Article  ADS  Google Scholar 

  • A.-L. Barabási, R. Albert, Science 286 50, (1999)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Makowiec.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makowiec, D. Evolving network – simulation study. Eur. Phys. J. B 48, 547–555 (2005). https://doi.org/10.1140/epjb/e2006-00008-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2006-00008-2

Keywords

Navigation