Skip to main content
Log in

Relating Lagrangian passive scalar scaling exponents to Eulerian scaling exponents in turbulence

  • Hydrodynamics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

Intermittency is a basic feature of fully developed turbulence, for both velocity and passive scalars. Intermittency is classically characterized by Eulerian scaling exponent of structure functions. The same approach can be used in a Lagrangian framework to characterize the temporal intermittency of the velocity and passive scalar concentration of a an element of fluid advected by a turbulent intermittent field. Here we focus on Lagrangian passive scalar scaling exponents, and discuss their possible links with Eulerian passive scalar and mixed velocity-passive scalar structure functions. We provide different transformations between these scaling exponents, associated to different transformations linking space and time scales. We obtain four new explicit relations. Experimental data are needed to test these predictions for Lagrangian passive scalar scaling exponents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Z. Warhaft, Annual Rev. Fluid Mech. 32, 203 (2000)

    ADS  MATH  MathSciNet  Google Scholar 

  • S. Pope, Turbulent flows (Cambridge University Press, 2000)

  • A.N. Kolmogorov, C. R. Acad. Sci. URSS 30, 301 (1941)

    MATH  Google Scholar 

  • A.M. Obukhov, Izv. Akad. Nauk. SSSR Geogr. Geofiz. 13, 58 (1949)

    Google Scholar 

  • S. Corrsin, J. Appl. Phys. 22, 469 (1951)

    MATH  MathSciNet  Google Scholar 

  • H. Tennekes, J.L. Lumley, A First Course in Turbulence (MIT Press, 1972)

  • L.D. Landau, E.M. Lifshitz, Fluid Mechanics (MIR, 1944), first russian edition

  • E. Inoue, J. Meteorol. Soc. Jpn. 29, 246 (1952)

    Google Scholar 

  • U. Frisch, Turbulence; the legacy of A. N. Kolmogorov (Cambridge University Press, 1995)

  • L'héritage de Kolmogorov en physique, edited by R. Livi, A. Vulpiani (Belin, Paris, 2003)

  • T. Bohr, M.H. Jensen, G. Paladin, A. Vulpiani, Dynamical systems approach to turbulence (Cambridge University Press, 1998)

  • D. Schertzer, S. Lovejoy, F. Schmitt, Y. Chigirinskaya, D. Marsan, Fractals 5, 427 (1997)

    MATH  ISI  MathSciNet  Google Scholar 

  • A. Arnéodo, C. Baudet, F. Belin, R. Benzi, B. Castaing, B. Chabaud, R. Chavarria, S. Ciliberto, R. Camussi, F. Chilla, et al. Europhys. Lett. 34, 411 (1996)

    ADS  Google Scholar 

  • R.H. Kraichnan, Phys. Rev. Lett. 72, 1016 (1994)

    Article  ADS  Google Scholar 

  • G. Falkovich, K. Gawedzki, M. Vergassola, Rev. Mod. Phys. 73, 913 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  • R.A. Antonia, E.J. Hopfinger, Y. Gagne, F. Anselmet, Phys. Rev. A 30, 2704 (1984)

    Article  ADS  Google Scholar 

  • G. Ruiz-Chavarria, C. Baudet, S. Ciliberto, Physica D 99, 369 (1996)

    Article  MATH  Google Scholar 

  • F.G. Schmitt, D. Schertzer, S. Lovejoy, Y. Brunet, Europhys. Lett. 34, 195 (1996)

    Article  ADS  Google Scholar 

  • O.N. Boratav, R.B. Pelz, Phys. Fluids 10, 2122 (1998)

    ADS  MathSciNet  Google Scholar 

  • G. Xu, R.A. Antonia, S. Rajagopalan, Europhys. Lett. 49, 452 (2000)

    Article  ADS  Google Scholar 

  • F. Moisy, H. Willaime, J.S. Andersen, P. Tabeling, Phys. Rev. Lett. 86, 4827 (2001)

    Article  ADS  Google Scholar 

  • A. Gylfason, Z. Warhaft, Phys. Fluids 16, 4012 (2004)

    Article  ADS  Google Scholar 

  • T. Watanabe, T. Gotoh, New J. Phys. 6, 40 (2004)

    Article  ADS  Google Scholar 

  • R.A. Antonia, C.W.V. Atta, J. Fluid Mech. 67, 273 (1975)

    ADS  Google Scholar 

  • C. Meneveau, K.R. Sreenivasan, P. Kailasnath, M.S. Fan, Phys. Rev. A 41, 894 (1990)

    ADS  MathSciNet  Google Scholar 

  • L. Seuront, F.G. Schmitt, Deep Sea Res. II 52, 1308 (2005)

    Google Scholar 

  • A.M. Yaglom, Dokl. Akad. Nauk. SSSR 69, 743 (1949)

    MATH  MathSciNet  Google Scholar 

  • J.-F. Pinton, F. Plaza, L. Danaila, P.L. Gal, F. Anselmet, Physica D 122, 187 (1998)

    Article  ADS  ISI  Google Scholar 

  • E. Lévêque, G. Ruiz-Chavarria, C. Baudet, S. Ciliberto, Phys. Fluids 11, 1869 (1999)

    Google Scholar 

  • R. Rao, Phys. Rev. E 59, 1727 (1999)

    ADS  Google Scholar 

  • L. Mydlarski, J. Fluid Mech. 475, 173 (2003)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • E.A. Novikov, Phys. Fluids A 1, 326 (1989)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  • L. Seuront, F. Schmitt, D. Schertzer, Y. Lagadeuc, S. Lovejoy, Nonlinear Proc. Geophys. 3, 236 (1996)

    ADS  Google Scholar 

  • L. Seuront, F.G. Schmitt, Geophys. Res. Lett. 31, L03306 (2004)

  • F.G. Schmitt, Physica A (submitted)

  • M.S. Borgas, Phil. Trans. R. Soc. Lond. A 342, 379 (1993)

    ADS  MATH  Google Scholar 

  • N. Mordant, O. Michel, P. Metz, J.-F. Pinton, Phys. Rev. Lett. 87, 21 (2001)

    Article  Google Scholar 

  • L. Chevillard, S.G. Roux, E. Lévêque, N. Mordant, J.-F. Pinton, A. Arnéodo, Phys. Rev. Lett. 91, 214502 (2003)

    Article  ADS  Google Scholar 

  • L. Chevillard, (Ph.D. thesis, University of Bordeaux I available online at http://tel.ccsd.cnrs.fr (2004)

  • G. Boffetta, F.D. Lillo, S. Musacchio, Phys. Rev. E 66, 066307 (2002)

    ADS  MathSciNet  Google Scholar 

  • L. Biferale, G. Boffetta, A. Celani, B.J. Devenish, A. Lanotte, F. Toschi, Phys. Rev. Lett. 93, 064502 (2004)

    Article  ADS  Google Scholar 

  • L. Biferale, G. Boffetta, A. Celani, A. Lanotte, F. Toschi, Phys. Fluids 17, 021701 (2005)

    Google Scholar 

  • L.F. Richardson, Proc. Roy. Soc. London A 110, 709 (1926)

    ADS  Google Scholar 

  • G. Parisi, U. Frisch, in Turbulence and Predictability in Geophysical Fluid Dynamics and Climate Dynamics, edited by M. Ghil, R. Benzi, G. Parisi (North Holland, Amsterdam, 1985), 84

  • F.G. Schmitt, Phys. Lett. A 342, 448 (2005)

    Article  Google Scholar 

  • Y.G. Sinai, V. Yakhot, Phys. Rev. Lett. 63, 1962 (1989)

    Article  ADS  Google Scholar 

  • S. Vaienti, M. Ould-Rouis, F. Anselmet, P.L. Gal, Physica D 73, 99 (1994)

    Article  ADS  MATH  ISI  MathSciNet  Google Scholar 

  • D. Schertzer, S. Lovejoy, J. Geophys. Res. 92, 9692 (1987)

    ADS  Google Scholar 

  • B.W. Zeff, D.L. Lanterman, R. McAllister, R. Roy, E.J. Kostelich, D.P. Lathrop, Nature 421, 146 (2003)

    Article  ADS  ISI  Google Scholar 

  • M. Chertkov, A. Pumir, B.I. Shraiman, Phys. Fluids 11, 2394 (1999)

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. G. Schmitt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schmitt, F. Relating Lagrangian passive scalar scaling exponents to Eulerian scaling exponents in turbulence. Eur. Phys. J. B 48, 129–137 (2005). https://doi.org/10.1140/epjb/e2005-00374-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2005-00374-1

Keywords

Navigation