Skip to main content
Log in

Magnetization of nanomagnet assemblies: Effects of anisotropy and dipolar interactions

  • Solid and Condensed State Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

We investigate the effect of anisotropy and weak dipolar interactions on the magnetization of an assembly of nanoparticles with distributed magnetic moments, i.e., assembly of magnetic nanoparticles in the one-spin approximation, with textured or random anisotropy. The magnetization of a free particle is obtained either by a numerical calculation of the partition function or analytically in the low and high field regimes, using perturbation theory and the steepest-descent approximation, respectively. The magnetization of an interacting assembly is computed analytically in the range of low and high field, and numerically using the Monte Carlo technique. Approximate analytical expressions for the assembly magnetization are provided which take account of the dipolar interactions, temperature, magnetic field, and anisotropy. The effect of anisotropy and dipolar interactions are discussed and the deviations from the Langevin law they entail are investigated, and illustrated for realistic assemblies with the lognormal moment distribution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • X. Battle, A. Labarta, J. Phys. D: Appl. Phys. 35, R15 (2002)

  • R. Skomski, J. Phys. C: Condens. Phys. 15, R841 (2003)

  • J.-L. Dormann, D. Fiorani, E. Tronc, Adv. Chem. Phys. 98, 283 (1997)

    CAS  Google Scholar 

  • W. Wernsdorfer, Adv. Chem. Phys. 118, 99 (2001)

    CAS  Google Scholar 

  • M.P. Sharrock, IEEE Trans. Magn. 26, 193 (1990)

    Article  ADS  Google Scholar 

  • K.E. Johnson, J. Appl. Phys. 69, 4932 (1991)

    Article  ADS  Google Scholar 

  • J.L. Dormann, D. Fiorani, R. Cherkaoui, E. Tronc, F. Lucari, F. D’Orazio, L. Spinu, M. Noguès, H. Kachkachi, J.P. Jolivet, J. Magn. Magn. Mater. 203, 23 (1999)

    Article  CAS  ADS  Google Scholar 

  • P.E. Jönsson, S. Felton, P. Svedlindh, P. Nordblad, M.F. Hansen, Phys. Rev. B 64, 212402 (2001)

    Article  ADS  Google Scholar 

  • E. Tronc et al., J. Magn. Magn. Mater. 221, 63 (2000)

    Article  Google Scholar 

  • R. Sappey, E. Vincent, N. Hadacek, F. Chaput, J.P. Boilot, D. Zins, Phys. Rev. B 56, 14551 (1997)

    Article  CAS  ADS  Google Scholar 

  • H. Kachkachi, W.T. Coffey, D.S.F. Crothers, A. Ezzir, E.C. Kennedy, M. Noguès, E. Tronc, J. Phys.: Condens. Matter 48, 3077 (2000)

    Article  ADS  Google Scholar 

  • A. Ezzir, Propriétés magnétiques d’une assemblées de nanoparticules: modélisation de l’aimantation et de la susceptibilité superparamagnétique et applications (Ph.D. thesis, Université Paris-Sud, Orsay, 1998)

  • J.P. Chen, C.M. Sorensen, K.J. Klabunde, G.C. Hadjipanayis, Phys. Rev. B 51, 11527 (1995)

    Article  CAS  ADS  Google Scholar 

  • H. Kachkachi, A. Ezzir, M. Noguès, E. Tronc, Eur. Phys. J. B 14, 681 (2000)

    Article  CAS  ADS  Google Scholar 

  • R. Kretschmer, K. Binder, Z. Phys. B 34, 375 (1979)

    Article  CAS  ADS  Google Scholar 

  • D. Kechrakos, K. Trohidou, Phys. Rev. B 58, 12169 (1998)

    Article  CAS  ADS  Google Scholar 

  • P.E. Jonsson, J.L. Garcia-Palacios, Phys. Rev. B 64, 174416 (2001)

    Article  ADS  Google Scholar 

  • L.D. Landau, E.M. Lifshitz, Statistical Physics (Part 1) (Pergamon Press, Oxford, 1980)

  • Yu. Raikher, V. Stepanov, Phys. Rev. B 66, 214406 (2002)

    Article  ADS  Google Scholar 

  • H. Kachkachi, D.A. Garanin, Eur. Phys. J. B 22, 291 (2001)

    Article  CAS  ADS  Google Scholar 

  • Yu.A. Izyumov, Yu.N. Skryabin, Statistical Mechanics of Magnetically Ordered Materials (Consultants Bureau, New York, London, 1988)

  • E.S. Fradkin, Field theories of condensed matter systems (Addison Wesley Pub. Company, New York, 1991)

  • Hagen Kleinert, Path Integrals in Quantum Mechanics, Statistics and Polymer Physics (World Scientific, Singapore, 1995)

  • P. Prené, Particule d’oxyde de Fer spinelle: physico-chimie des dispersions et comportements magnétique (Ph.D. thesis, Université P. et M. Curie, Orsay, 1995)

  • K. Binder, D. Heermann, Monte Carlo simulation in statistical physics (Springer-Verlag, Berlin, 1992)

  • D.A. Garanin, H. Kachkachi, Phys. Rev. Lett. 90, 65504 (2003)

    Article  CAS  ADS  Google Scholar 

  • H. Kachkachi, D.A. Garanin, Physica A 300, 487 (2001)

    MATH  MathSciNet  ADS  Google Scholar 

  • J.M. Luttinger, L. Tisza, Phys. Rep. 70, 954 (1946)

    Article  CAS  Google Scholar 

  • H. Kachkachi, M. Dimian, Phys. Rev. B 66, 174419 (2002)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Kachkachi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kachkachi, H., Azeggagh, M. Magnetization of nanomagnet assemblies: Effects of anisotropy and dipolar interactions. Eur. Phys. J. B 44, 299–308 (2005). https://doi.org/10.1140/epjb/e2005-00129-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2005-00129-0

Keywords

Navigation