Skip to main content
Log in

Quantum interference in nanotube electron waveguides

  • Mesoscopic Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

We have calculated the quantum conductance of single-walled carbon nanotube (SWNT) waveguide by using a tight binding-based Green’s function approach. Our calculations show that the slow conductance oscillations as well as the fast conductance oscillations are manifestations of the intrinsic quantum interference properties of the conducting SWNTs, being independent of the defect and disorder of the SWNTs. And zigzag type tubes do not show the slow oscillations. The SWNT electron waveguide is also found to have distinctly different transport behavior depending on whether or not the length of the tube is commensurate with a (3N+1) rule, with N the number of basic carbon repeat units along the nanotube length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • S. Iijima, Nature 354, 56 (1991)

    Article  Google Scholar 

  • R. Saito, M. Fujita, G. Dresselhaus, Phys. Rev. B 46, 1804 (1992)

    Google Scholar 

  • N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett. 68, 1579 (1992)

    Google Scholar 

  • J.M. Mintmire, B.I. Dunlap, C.T. White, Phys. Rev. Lett. 68, 631 (1992)

    Article  Google Scholar 

  • X. Blase, L.X. Benedict, E.L. Shirley, S.G. Louie, Phys. Rev. Lett. 72, 1878 (1994)

    Article  Google Scholar 

  • S. Frank, P. Poncharal, Z.L. Wang, W.A. de Heer, Science 280, 1744 (1998)

    Google Scholar 

  • W. Liang, M. Bockrath, D. Bozovic, J.H. Hafner, M. Tinkham, H. Park, Nature (London) 411, 665 (2001)

    Google Scholar 

  • J. Kong, E. Yenilmez, T.W. Tombler, W. Kim, H. Dai, Phys. Rev. Lett. 87, 106801 (2001)

    Google Scholar 

  • P.J. de Pablo, C. Gomez-Navarro, J. Colchero, P.A. Serena, J. Gomez-Herrero, A.M. Baro, Phys. Rev. Lett. 88, 036804 (2002)

    Google Scholar 

  • A.Bachtold, M.S. Fuhrer, S. Plyasunov, M. Forrero, E.H. Anderson, A. Zettl, P.L. McEuen, Phys. Rev. Lett. 84, 6082 (2000)

    Google Scholar 

  • J. Nygard, D.H. Cobden, P.E. Lindelof, Nature (London) 408, 342 (2000)

    Google Scholar 

  • M.B. Nardelli, Phys. Rev. B 60, 7828 (1999)

    Article  Google Scholar 

  • Jie Jiang, Jinming Dong, D.Y. Xing, Phys. Rev. Lett. 91, 056802 (2003)

    Google Scholar 

  • L. Chico, V.H. Crespi, L.X. Benrdict, S.G. Louie, M.L. Cohen, Phys. Rev. Lett. 76, 971 (1996)

    Google Scholar 

  • D.S. Fisher, P.A. Lee, Phys. Rev. B 23, 6851 (1981)

    Google Scholar 

  • Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992)

    Google Scholar 

  • S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge University Press, Cambridge, 1995)

  • M.P. Lopez-Sancho, J.M. Lopez-Sancho, J. Phys. F 14, 1205 (1984); M.P. Lopez-Sancho, J.M. Lopez-Sancho, J. Phys. F 15, 851 (1985)

    Google Scholar 

  • A. Rubio, D. Sanchez-Portal, E. Artacho, P. Ordejon, J.M. Soler, Phys. Rev. Lett. 82, 3520 (1999)

    Google Scholar 

  • H. Mehrez, J. Taylor, Hong Guo, Jian Wang, C. Roland, Phys. Rev. Lett. 84, 2682 (2000)

    Article  Google Scholar 

  • D. Orlikowski, H. Mehrez, J. Taylor, Hong Guo, Jian Wang, C. Roland, Phys. Rev. B 63, 155412 (2001)

    Google Scholar 

  • S. Berber, D. Tomanek, Phys. Rev. B 69, 233404 (2004)

    Google Scholar 

  • F. Triozon, S. Roche, A. Rubo, D. Mayou, Phys. Rev. B 69, 121410 (2004)

    Google Scholar 

  • Linfeng Yang, Jiangwei Chen, Huatong Yang, Jinming Dong, Phys. Rev. B 69, 153407 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Linfeng Yang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, L., Chen, J., Yang, H. et al. Quantum interference in nanotube electron waveguides. Eur. Phys. J. B 43, 399–403 (2005). https://doi.org/10.1140/epjb/e2005-00070-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2005-00070-2

Keywords

Navigation