Skip to main content
Log in

Dimer site-bond percolation on a square lattice

  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

A generalization of the pure site and pure bond percolation problems in which pairs of nearest neighbor sites (site dimers) and linear pairs of nearest neighbor bonds (bond dimers) are independently occupied at random on a square lattice is studied. We called this model as dimer site-bond percolation. Motivated by considerations of cluster connectivity, we have used two distinct schemes (denoted as \(S\cap B\) and \(S\cup B\)) for dimer site-bond percolation. In \(S \cap B\) (\(S \cup B\)), two points are said to be connected if a sequence of occupied sites and (or) bonds joins them. By using finite-size scaling theory, data from \(S \cap B\) and \(S \cup B\) are analyzed in order to determine i) the phase boundary between the percolating and non-percolating regions and ii) the numerical values of the critical exponents of the phase transition occurring in the system. The results obtained are discussed in comparison with the corresponding ones for classical monomer site-bond percolation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Hugo Duminil-Copin, Marcelo R. Hilário, … Vladas Sidoravicius

References

  • J.M. Hammersley, Proc. Cambridge Phil. Soc. 53, 642 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  • D. Stauffer, Introduction to Percolation Theory (Taylor & Francis, 1985)

  • R. Zallen, The Physics of Amorphous Solids (John Willey & Sons, NY, 1983)

  • J.W. Essam, Reports on Progress in Physics 43, 833 (1980)

    ADS  MathSciNet  Google Scholar 

  • K. Binder, Reports on Progress in Physics 60, 488 (1997)

    ADS  Google Scholar 

  • C. Lorenz, R. May, R. Ziff, J. Stat. Phys. 98, 961 (2000)

    MATH  Google Scholar 

  • M. Aizenman, Nuclear Phys. B 485, 551 (1997)

    MATH  ADS  MathSciNet  Google Scholar 

  • J. Cardy, J. Phys. A 31, L105 (1998)

  • L.N. Shchur, S.S. Kosyakov, Int. J. Mod. Phys. C 8, 473 (1997)

    ADS  Google Scholar 

  • L.N. Shchur, Incipient Spanning Clusters in Square and Cubic Percolation, in Springer Proceedings in Physics, Vol. 85, edited by D.P. Landau, S.P. Lewis, H.B. Schuettler (Springer Verlag, Heidelberg, Berlin, 2000)

  • A. Coniglio, H.E. Stanley, W. Klein, Phys. Rev. Lett. 42, 518 (1979)

    ADS  Google Scholar 

  • H.L. Frisch, J.M. Hammersley, J. Soc. Ind. Appl. Math. 11, 894 (1963)

    MathSciNet  Google Scholar 

  • P. Agrawal, S. Render, P.J. Reynolds, H.E. Stanley, J. Phys. A: Math. Gen. 12, 2073 (1979)

    ADS  Google Scholar 

  • H. Nakanishi, J. Reynolds, Phys. Lett. 71 A, 252 (1979)

    Google Scholar 

  • M. Yanuka, R. Englman, J. Phys. A: Math. Gen. 23, L339 (1990)

  • Y.Y. Tarasevich, S.C. van der Marck, Int. J. Mod. Phys. C 10, 1193 (1999)

    ADS  Google Scholar 

  • W. Kinzel, Directed Percolation, in Percolation Structures and Processes, edited by G. Deutscher, R. Zallen, J. Adler (Hilger, Bristol, 1983)

  • P. Grassberger, A. de la Torre, Ann. Phys. N.Y. 122, 373 (1979)

    ADS  Google Scholar 

  • P. Grassberger, K. Sundermeyer, Phys. Lett. B 77, 220 (1978)

    ADS  Google Scholar 

  • K. De’Bell, J.W. Essam, J. Phys. A: Math. Gen. 18, 355 (1985)

    ADS  Google Scholar 

  • A. Tretyakov, N. Inui, J. Phys. A: Math. Gen. 28, 3985 (1995)

    MATH  ADS  Google Scholar 

  • J.W. Evans, D.E. Sanders, Phys. Rev. B 39, 1587 (1989)

    ADS  Google Scholar 

  • H. Harder, A. Bunde, W. Dieterich, J. Chem. Phys. 85, 4123 (1986)

    ADS  Google Scholar 

  • H. Holloway, Phys. Rev. B 37, 874 (1988)

    ADS  Google Scholar 

  • M. Henkel, F. Seno, Phys. Rev. E 53, 3662 (1996)

    ADS  Google Scholar 

  • E.L. Hinrichsen, J. Feder, T. Jossang, J. Stat. Phys. 44, 793 (1986)

    ADS  Google Scholar 

  • Y. Leroyer, E. Pommiers, Phys. Rev. B 50, 2795 (1994)

    ADS  Google Scholar 

  • B. Bonnier, M. Honterbeyrie, Y. Leroyer, C. Meyers, E. Pommiers, Phys. Rev. B 49, 305 (1994)

    ADS  Google Scholar 

  • Z. Gao, Z.R. Yang, Physica A 255, 242 (1998)

    Google Scholar 

  • V. Cornette, A.J. Ramirez-Pastor, F. Nieto, Physica A 327, 71 (2003)

    MATH  ADS  Google Scholar 

  • V. Cornette, A.J. Ramirez-Pastor, F. Nieto, Eur. Phys. J. B 36, 391 (2003)

    ADS  Google Scholar 

  • R.M. Ziff, E. Gulari, Y. Barshad, Phys. Rev. Lett. 56, 2553 (1986), and references therein

    Article  ADS  Google Scholar 

  • C.T. Rettner, H. Stein, Phys. Rev. Lett. 59, 2768 (1987)

    ADS  Google Scholar 

  • C.T. Rettner, C.B. Mullins, J. Chem. Phys. 94, 1626 (1991)

    ADS  Google Scholar 

  • J.E. Davis, P.D. Nolan, S.G. Karseboom, C.B. Mullins, J. Chem. Phys. 107, 943 (1997)

    ADS  Google Scholar 

  • J. Hoshen, R. Kopelman, Phys. Rev. B 14, 3438 (1976); J. Hoshen, R. Kopelman, E.M. Monberg, J. Stat. Phys. 19, 219 (1978)

    ADS  Google Scholar 

  • F. Yonezawa, S. Sakamoto, M. Hori, Phys. Rev. B 40, 636 (1989)

    ADS  Google Scholar 

  • F. Yonezawa, S. Sakamoto, M. Hori, Phys. Rev. B 40, 650 (1989)

    ADS  Google Scholar 

  • V. Privman, P.C. Hohenberg, A. Aharony, “Universal Critical-Point Amplitude Relations”, in Phase Transitions and Critical Phenomena, edited by C. Domb, J.L. Lebowitz, Vol. 14, Chap. 1 (Academic, NY, 1991), pp. 1134 and 364367

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Ramirez-Pastor.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolz, M., Nieto, F. & Ramirez-Pastor, A. Dimer site-bond percolation on a square lattice. Eur. Phys. J. B 43, 363–368 (2005). https://doi.org/10.1140/epjb/e2005-00064-0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2005-00064-0

Keywords

Navigation