Skip to main content

Hydrogen desorption from ball milled MgH2 catalyzed with Fe

Abstract.

In order to obtain faster hydrogen sorption kinetics, MgH2-Fe nanocomposites were prepared by high-energy ball milling. The MgH2 decomposition was studied in samples obtained by changing in a systematic way both the catalyst amount and the degree of microstructural refinement. To this purpose, blends containing increasing Fe concentration have been ball milled in processing conditions able to impart different amount of structural defects. The resulting samples have been characterized by X-ray diffraction to investigate the microstructural features and the phase composition, while the powder morphology and the degree of catalyst dispersion were analyzed by scanning electron microscopy. Differential scanning calorimetry was carried out to characterize the hydrogen desorption behavior of these nanocomposites. Experimental results clearly show that the characteristics of the desorption process are dominated, among other factors, by the morphology of the catalyst dispersion, which in turns depends on the processing conditions and blend composition. In order to achieve low desorption temperatures the homogeneous catalyst dispersion in micron-size particles throughout the structure is required. This condition can be achieved by suitable tuning of the milling conditions and of the catalyst amount.

This is a preview of subscription content, access via your institution.

References

  1. C.C. Koch, O.B. Cavin, C.G. Mckamey, J.O. Scarborough, Appl. Phys. Lett. 43, 1017 (1983)

    Article  MATH  ADS  Google Scholar 

  2. R.B. Schwarz, W.L. Johnson, Phys. Rev. Lett. 51, 415 (1983)

    ADS  Google Scholar 

  3. J. Huot, G. Liang, S. Boily, A. Van Neste, R. Schulz, J. Alloys Comp. 293–295, 495 (1999)

    Google Scholar 

  4. F.C. Gennari, F.J. Castro, G. Urretavizcaya, J. Alloys Comp. 321, 46 (2001)

    Google Scholar 

  5. A. Zaluska, L. Zaluski, J.O. Ström-Olsen, J. Alloys Comp. 288, 217 (1999)

    Google Scholar 

  6. L. Kanoya, M. Hosoe, T. Suzuki, Honda R&D Tech. Rev. 14, 9 (2002)

    Google Scholar 

  7. W. Oelerich, T. Klassen, R. Bormann, J. Alloys Comp. 315, 237 (2001)

    Google Scholar 

  8. M. Terzieva, M. Khrussanova, P. Peshev, J. Alloys Comp. 267, 235 (1998)

    Google Scholar 

  9. G. Liang, J. Huot, S. Boily, A. Van Neste, R. Schulz, J. Alloys Comp. 297, 261 (2000)

    Google Scholar 

  10. G. Liang, E. Wang, S. Fang, J. Alloys Comp. 223, 111 (1995)

    Google Scholar 

  11. P. Wang, A. Wang, H. Zhang, B. Ding, Z. Hu, J. Alloys Comp. 297, 240 (2000)

    Google Scholar 

  12. L. Zaluski, A. Zaluska, J.O. Ström-Olsen, J. Alloys Comp. 253, 70 (1997)

    Google Scholar 

  13. G. Liang, J. Huot, S. Boily, A. Van Neste, R. Schulz, J. Alloys Comp. 292, 247 (1999)

    Google Scholar 

  14. J.-L. Bobet, E. Akiba, Y. Nakamura, B. Darriet, Int. J. Hydrogen Energy 25, 987 (2000)

    Google Scholar 

  15. N. Burgio, A. Iasonna, M. Magini, S. Martelli, F. Padella, Il Nuovo Cimento D 13, 459 (1991)

    ADS  Google Scholar 

  16. L. Lutterotti, P. Scardi, J. Appl. Crystallogr. 23, 246 (1990)

    Google Scholar 

  17. J. Huot, S. Boily, E. Akiba, R. Schulz, J. Alloys Comp. 280, 306 (1998)

    Google Scholar 

  18. A. Bassetti, E. Bonetti, A.L. Fiorini, J. Grbovi ae , A. Montone, L. Pasquini, M. Vittori Antisari, Mat. Sci. Forum 453-454, 205 (2004)

  19. A. Zaluska, A. Zaluski, J.O. Ström-Olsen, Appl. Phys. A 72, 157 (2001)

    Article  ADS  Google Scholar 

  20. M.T. Hagström, P.D. Lund, Thermochimica Acta 298, 141 (1997)

    Google Scholar 

  21. G. Barkhordarian, T. Klassen, R. Bormann, J. Alloys Comp. 364, 242 (2004)

    Google Scholar 

  22. S. Dal Toè, S. Lo Russo, A. Maddalena, G. Principi, A. Saber, S. Sartori, T. Spataru, Mater. Sci. Eng. B 108, 24 (2004)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Pasquini.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bassetti, A., Bonetti, E., Pasquini, L. et al. Hydrogen desorption from ball milled MgH2 catalyzed with Fe. Eur. Phys. J. B 43, 19–27 (2005). https://doi.org/10.1140/epjb/e2005-00023-9

Download citation

Keywords

  • Differential Scanning Calorimetry
  • MgH2
  • Catalyst Amount
  • Hydrogen Desorption
  • Microstructural Refinement