Skip to main content
Log in

Traveling–stripe forcing of oblique rolls in anisotropic systems

  • Hydrodynamics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

The effects of a traveling, spatially periodic forcing are investigated in a system with axial anisotropy, where oblique stripe patterns occur at threshold in the unforced case and where the forcing wavenumber and the wavenumber of stripes are close to a 2:1 resonance. The forcing induces an interaction between the two degenerate oblique stripe orientations and for larger forcing amplitudes rectangular patterns are induced, which are dragged in phase by the forcing. With increasing forcing velocity a transition from a locked rectangular pattern to an unlocked superposition of a rectangular and oblique stripe pattern takes place. In this transition regime, especially when the ratio between the wavenumber of the forcing and that of the pattern deviates from the 2:1 ratio, surprisingly stable or long living complex patterns, such as zig–zag patterns and patterns including domain walls are found. Even more surprising is the observation, that such coherent structures propagate faster than the stripe forcing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R.E. Kelly, D. Pal, J. Fluid Mech. 86, 433 (1978)

    Google Scholar 

  • M. Lowe, J.P. Gollub, T. Lubensky, Phys. Rev. Lett. 51, 786 (1983)

    Google Scholar 

  • M. Lowe, B.S. Albert, J.P. Gollub, J. Fluid Mech. 173, 253 (1986)

    Google Scholar 

  • P. Coullet, Phys. Rev. Lett. 56, 724 (1986)

    Google Scholar 

  • P. Coullet, D. Repaux, Europhys. Lett. 3, 573 (1987)

    Google Scholar 

  • P. Coullet, D. Walgraef, Europhys. Lett. 10, 525 (1989)

    Google Scholar 

  • W. Zimmermann et al., Europhys. Lett. 24, 217 (1993)

    Google Scholar 

  • A. Ogawa, W. Zimmermann, K. Kawasaki, T. Kawakatsu, J. Phys. II France 6, 305 (1996)

    Google Scholar 

  • Y. Hidaka, T. Fujimura, N.A. Mori, S. Kai, Mol Cryst. & Liq. Cryst. 328, 565 (1999)

    Google Scholar 

  • I. Rehberg et al., Phys. Rev. Lett. 61, 2449 (1988)

    Google Scholar 

  • H. Riecke, J.D. Crawford, E. Knobloch, Phys. Rev. Lett. 61, 1942 (1988)

    Google Scholar 

  • D. Walgraef, Europhys. Lett. 7, 485 (1988)

    Google Scholar 

  • A.L. Lin et al., Phys. Rev. Lett. 84, 4240 (2000)

    Google Scholar 

  • A.L. Lin et al., Phys. Rev. E 62, 3790 (2000)

    Google Scholar 

  • C. Utzny, W. Zimmermann, M. Bär, Europhys. Lett. 57, 113 (2002)

    Google Scholar 

  • S. Rüdiger et al., Phys. Rev. Lett. 90, 128301 (2003)

    Google Scholar 

  • D.G. Miguez et al., Phys. Rev. Lett. 93, 048303 (2004)

    Google Scholar 

  • M. Dolnik, I. Berenstein, A.M. Zhabotinsky, I.R. Epstein, Phys. Rev. Lett. 87, 238301 (2001)

    Google Scholar 

  • I. Berenstein et al., Phys. Rev. Lett. 91, 058302 (2003)

    Google Scholar 

  • V.K. Vanag, I.R. Epstein, Phys. Rev. E 67, 066219 (2003)

    Google Scholar 

  • M. Henriot, J. Burguette, R. Ribotta, Phys. Rev. Lett. 91, 104501 (2003)

    Google Scholar 

  • W. Zimmermann, L. Kramer, Phys. Rev. Lett. 55, 402 (1985)

    Google Scholar 

  • R. Ribotta, A. Joets, L. Lei, Phys. Rev. Lett. 56, 1595 (1986)

    Google Scholar 

  • E. Bodenschatz, W. Zimmermann, L. Kramer, J. Phys. (France) 49, 1875 (1988)

    Google Scholar 

  • S. Kai, W. Zimmermann, Prog. Theor. Phys. Suppl. 99, 458 (1989)

    Google Scholar 

  • L. Kramer, W. Pesch, Annu. Rev. Fluid Mech. 27, 515 (1995)

    Google Scholar 

  • J.E. Hart, J. Fluid Mech. 47, 547 (1971)

    Google Scholar 

  • L.N. Shadid, R.J. Goldstein, J. Fluid Mech. 215, 61 (1990)

    Google Scholar 

  • K.E. Daniels, B.B. Plapp, E. Bodenschatz, Phys. Rev. Lett. 84, 5320 (2000)

    Google Scholar 

  • The Couette-Taylor Problem, edited by P. Chossat, G. Iooss (Springer, Berlin, 1994)

  • E.R. Krueger, A. Gross, R.C. DiPrima, J. Fluid Mech. 24, 521 (1966)

    Google Scholar 

  • H.A. Snyder, Phys. Fluids 11, 728 (1968)

    Google Scholar 

  • C.D. Anderek, S.S. Liu, H.L. Swinney, P.S. Marcus, J. Fluid Mech. 164, 155 (1986)

    Google Scholar 

  • C. Hoffmann, M. Lücke, A. Pinter, Phys. Rev. E 69, 056309 (2004)

    Google Scholar 

  • A.C. Newell, J.A. Whitehead, J. Fluid Mech. 38, 279 (1969)

    Google Scholar 

  • A.C. Newell, T. Passot, J. Lega, Annu. Rev. Fluid Mech. 25, 399 (1992)

    Google Scholar 

  • M.C. Cross, P.C. Hohenberg, Rev. Mod. Phys. 65, 851 (1993)

    Article  Google Scholar 

  • W. Pesch, L. Kramer, Z. Physik B 63, 121 (1986)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Zimmermann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schuler, S., Hammele, M. & Zimmermann, W. Traveling–stripe forcing of oblique rolls in anisotropic systems. Eur. Phys. J. B 42, 591–600 (2004). https://doi.org/10.1140/epjb/e2005-00019-5

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2005-00019-5

Keywords

Navigation