Skip to main content
Log in

Heat conductivity in small quantum systems: Kubo formula in Liouville space

  • Statistical and Nonlinear Physics
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

We consider chains consisting of several identical subsystems weakly coupled by various types of next neighbor interactions. At both ends the chain is coupled to a respective heat bath with different temperature modeled by a Lindblad formalism. The temperature gradient introduced by this environment is then treated as an external perturbation. We propose a method to evaluate the heat current and the local temperature profile of the resulting stationary state as well as the heat conductivity in such systems. This method is similar to Kubo techniques used e.g. for electrical transport but extended here to the Liouville space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • R. Kubo, M. Toda, N. Hashitsume, Statistical Physics II: Nonequilibrium Statistical Mechanics, Number 31 in Solid-State Sciences, 2nd edn. (Springer, Berlin, Heidelberg, New-York, 1991)

  • H. Mori, Phys. Rev. 115, 298 (1956)

    Google Scholar 

  • G.D. Mahan, Many-Particle Physics, 3rd edn. (Plenum Press, New York, London, 2000)

  • D.N. Zubarev, Nonequilibrium Statistical Thermodynamics, Studies in Soviet Sciences. Consultants Bureau, New York, London, 1974. transl. by P.J. Shepherd

  • R. Kubo, J. Phys. Soc. Jpn 12, 570 (1957)

    MATH  Google Scholar 

  • J.M. Luttinger, Phys. Rev. 135(6A), A1505 (1964)

  • X. Zotos, F. Naef, P. Prelovsek, Phys. Rev. B 55(17), 11029 (1997)

    Google Scholar 

  • F. Heidrich-Meisner, A. Honecker, D.C. Cabra, W. Brenig, Zero-Frequency transport properties of one dimensional spin-1/2 systems, cond-math/0304595, 2003

  • A. Klümper, K. Sakai, J. Phys. A: Math. Gen. 35, 2173 (2002)

    Google Scholar 

  • K. Saito, Europhys. Lett. 61, 34 (2003)

    Google Scholar 

  • K. Saito, S. Takesue, S. Miyashita, Phys. Rev. E 54, 2404 (1996)

    Google Scholar 

  • G. Lindblad, Commun. Math. Phys. 48, 119 (1976)

    MATH  Google Scholar 

  • K. Saito, S. Miyashita, J. Phys. Soc. Jpn 71, 2485 (2002)

    Google Scholar 

  • M. Michel, M. Hartmann, J. Gemmer, G. Mahler, Eur. Phys. J. B 34, 325 (2003)

    Google Scholar 

  • R. Schack, M.C. Caves, J. Mod. Opt. 47(2/3), 387 (2000)

    Google Scholar 

  • V.E. Tarasov, Phys. Rev. E 66, 056116 (2002)

    Google Scholar 

  • S. Mukamel, Phys. Rev. E 68(2), 021111 (2003)

    Google Scholar 

  • S. Nakajima, Prog. Theor. Phys. 20, 948 (1958)

    Google Scholar 

  • R. Zwanzig, J. Chem. Phys. 33, 1338 (1960)

    Google Scholar 

  • S. Miyashita, K. Saito, Physica B 329–333, 1142 (2003)

  • J. Gemmer, M. Michel, G. Mahler, Quantum Thermodynamics, LNP657 (Springer, Heidelberg, Berlin, 2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Michel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Michel, M., Gemmer, J. & Mahler, G. Heat conductivity in small quantum systems: Kubo formula in Liouville space. Eur. Phys. J. B 42, 555–559 (2004). https://doi.org/10.1140/epjb/e2005-00014-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2005-00014-x

Keywords

Navigation