Skip to main content
Log in

Defects in nanocrystalline SnO\(\mathsf{_{2}}\) studied by Tight Binding

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

In this work we present a study of the properties of defective nanostructures. The material chosen to this purpose, i.e. SnO2, has practical applications and many of them rely on the spontaneous formation of vacancies. Therefore, crystalline grains with shape and size comparable to the experimental ones have been considered. According to the bulk properties, the grains lattice has the rutile structure and may also include vacancy defects. The calculations describe the effects of the structural grain parameters, i.e. size and shape, as well as of the defect type, on the grain cohesion and are based on a Tight Binding method. The comparison with Density Functional calculations, also carried out in the course of this study, illustrates the limits of both methods when used for these complex structures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. C.M. Goringe, D.R. Bowler, E. Hernandez, Rep. Prog. Phys. 60, 1447 (1997)

    Google Scholar 

  2. J. Robertson, J. Phys. C: Solid State Phys. 12, 4753 (1979), J. Robertson, J. Phys. C: Solid State Phys. 12, 4767 (1979)

    Google Scholar 

  3. T.J. Godin, J.P. LaFemina, Phys. Rev. B 47, 6518 (1993)

    Google Scholar 

  4. G. Calzaferri, L. Forss, I. Kamber, J. Phys. Chem. 93, 5366 (1989)

    Google Scholar 

  5. J.M. Soler, E. Artacho, J.D. Gale, A. Garcia, J. Junquera, P. Ordejon, D. Sanchez-Portal, J. Phys.: Condens. Matter 14, 2745 (2002)

    Article  Google Scholar 

  6. J. Goniakowski, J.M. Holender, L.N. Kantorovich, J.M. Gillan, J.A. White, Phys. Rev. B 53, 957 (1996)

    Google Scholar 

  7. Wang Dazhi, Wen Shulin, Chen Jun, Zheng Suyuan, Li Fangqing, Phys. Rev. B 49, 14282 (1994)

    Google Scholar 

  8. K.M. Yu, Y. Xiong, Y. Liu, C. Xiong, Phys. Rev. B 66, 2666 (1997)

    Google Scholar 

  9. A. Parisini, R. Angelucci, L. Dori, A. Poggi, P. Maccagnani, G.C. Cardinali, G. Amato, G. Lerondel, D. Midellino, Micron 31, 223 (2000)

    Google Scholar 

  10. A.M. Mazzone, Comp. Mat. Sci. 21, 211 (2001)

    Google Scholar 

  11. A.M. Mazzone, Phil. Mag. Lett. 82, 99 (2002), ibid. 84, 275 (2004)

    Google Scholar 

  12. S. Munnix, M. Schmeits, Phys. Rev. B 33, 4136 (1986)

    Google Scholar 

  13. B.K. Panda, S. Mukherjee, S.N. Behera, Phys. Rev. B 63, 45404 (2001)

    Google Scholar 

  14. G. Tomassini, M.G. Selme, P. Pecheur, Phys. Rev. B 36, 6135 (1987)

    Google Scholar 

  15. P.K. Schelling, N. Yu, J.W. Halley, Phys. Rev. B 58, 1279 (1998)

    Google Scholar 

  16. L.J. Munro, D.J. Wales, Phys. Rev. B 59, 3969 (1999)

    Google Scholar 

  17. L.A. Grunes, R.D. Leapman, C.N. Wilker, R. Hoffmann, A.B. Kunz, Phys. Rev. B 25, 7157 (1982)

    Google Scholar 

  18. J.K. Burdett, Inorg. Chem. 24, 2244 (1985)

    Google Scholar 

  19. E.L. Peltzer Blanca’, A. Svane, E. Christensen, C.O. Rodriguez, O.M. Capannini, M.S. Moreno, Phys. Rev. B 48, 15712 (1993)

    Google Scholar 

  20. J. Terra, D. Guenzburger, Phys. Rev. B 114, 8584 (1991)

    Google Scholar 

  21. D.Le. Bellac, J.M. Kiat, P. Garnier, J. Solid. State Chem. 114, 459 (1995)

    Google Scholar 

  22. G.W. Watson, J. Chem. Phys. 114, 758 (2001)

    Google Scholar 

  23. J.R. Chelikowsky, D.J. Chadi, M. Biggeli, Phys. Rev. B 64, R2051 (2000)

  24. M. Meyer, G. Onida, M. Palummo, L. Reining, Phys. Rev. B 64, 45119 (2001)

    Google Scholar 

  25. G.S. Painter, F.W. Averill, Phys. Rev. B 26, 1781 (1982)

    Google Scholar 

  26. J. Andezelm, N. Russo, D.R. Salahub, J. Chem. Phys. 87, 6562 (1987)

    Google Scholar 

  27. G. Meloni, R.W. Schmude Jr., J.E. Kingcade, K.A. Gingerich, J. Chem. Phys. 113, 1852 (2000)

    Google Scholar 

  28. Z.Y. Lu, C.Z. Wang, K.-M. Ho, Phys. Rev. B 61, 239 (2000)

    Google Scholar 

  29. J. Oviedo, M.J. Gillan, Surf. Sci. 513, 26 (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Mazzone.

Additional information

Received: 7 October 2004, Published online: 23 December 2004

PACS:

61.46. + w Nanoscale materials: clusters, nanoparticles and nanocrystals - 31.10. + z Theory of electronic structure, electronic transitions and chemical bonding - 31.15.Ew Density functional theory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mazzone, A.M., Morandi, V. Defects in nanocrystalline SnO\(\mathsf{_{2}}\) studied by Tight Binding. Eur. Phys. J. B 42, 435–440 (2004). https://doi.org/10.1140/epjb/e2004-00401-9

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00401-9

Keywords

Navigation