Skip to main content
Log in

Abstract.

The quiet times at a fixed point in space are investigated in a system close to or at a non-equilibrium phase transition. The statistics for such first-return times follow from the universality class of the dynamics and the ensemble: for a power-law waiting time distribution the exponent depends on the dimension and the underlying model. We study the two-dimensional Manna sandpile, with both the continously driven self-organized version and the tuned one. The latter has an absorbing state or depinning phase transition at a critical value of the control parameter. The connection to a driven interface in a random medium gives the exponent of the waiting time distribution. In the open ensemble, differences ensue due to the spatial inhomogeneity and the properties of the driving signal. For both ensembles, the waiting time distributions are found to exhibit logarithmic corrections to scaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Sornette, Critical Phenomena in Natural Sciences (Springer, Berlin, 2000)

  2. H.J. Jensen, Self Organized Criticality (Cambridge Univ. Press, Cambridge, 1998); G. Grinstein, in Scale Invariance, Interfaces and Nonequilibrium Dynamics, NATO ASI, Ser. B: Physics, Vol. 344, edited by A. McKane et al. (Plenum, New York, 1995)

  3. M.A. Muñoz, R. Dickman, R. Pastor-Satorras, A. Vespignani, S. Zapperi, Braz. J. Phys. 30, 27 (2000)

    Google Scholar 

  4. M. Alava, cond-mat/0307668; in: Advances in Condensed Matter and Statistical Mechanics, edited by E. Korutcheva, R. Cuerno (Nova Science Publishers, 2004)

  5. M.P. Freeman, N.W. Watkins, D.J. Riley, Phys. Rev. E 62, 8794 (2000); M.S. Wheatland, P.A. Sturrock, J.M. McTiernan, Astrophys. J. 509, 448 (1998)

    Google Scholar 

  6. M.S. Wheatland, Y.E. Livinenko, Solar Phys. 211, 255 (2002)

    Google Scholar 

  7. D. Hamon, M. Nicodemi, H.J. Jensen, Astron. Astrophys. 387, 326 (2002)

    Google Scholar 

  8. P. Grigolini, D. Leddon, N. Scafetta, Phys. Rev. E 65, 046203 (2002)

    Google Scholar 

  9. J.P. Norman, P. Charbonneau, S.W. McIntosh, H.L. Liu, Astroph. J. 557, 891 (2001)

    Google Scholar 

  10. S. Galtier, Solar Phys. 201, 133 (2001)

    Google Scholar 

  11. F. Lepreti, V. Carbone, P. Veltri, Astroph. J. 555, L133 (2001)

  12. E. Spada et al. , Phys. Rev. Lett. 86, 3032 (2001)

    Google Scholar 

  13. S. Chapman, N. Watkins, Space Sci. Rev. 95, 293 (2001)

    Google Scholar 

  14. R. Sánchez et al. , Phys. Rev. Lett. 88, 068302 (2002); R. Sánchez et al. , Phys. Rev. E 66, 036124 (2002)

    Google Scholar 

  15. M.S. Wheatland, Astrophys. J. 536, L109 (2000)

  16. N.W. Watkins, S. Oughton, M.P. Freeman, Plan. Space Sci. 49, 1233 (2001)

    Google Scholar 

  17. R. Pastor-Satorras, A. Vespignani, Phys. Rev. E 62, 5875 (2000); M. Rossi, R. Pastor-Satorras, A. Vespignani, Phys. Rev. Lett. 85, 1803 (2000)

    Google Scholar 

  18. M. Alava, M. Muńoz, Phys. Rev. E 65, 026145 (2002)

    Google Scholar 

  19. T. Nattermann et al. , J. Phys. France II 2, 1483 (1992); H. Leschhorn et al. , Ann. Physik 7, 1 (1997)

    Google Scholar 

  20. O. Narayan, D.S. Fisher, Phys. Rev. B 48, 7030 (1993)

    Google Scholar 

  21. P. Chauve, P. Le Doussal, K. Wiese, Phys. Rev. Lett. 86, 1785 (2001)

    Google Scholar 

  22. J. Krug et al. , Phys. Rev. E 56, 2702 (1997); J. Merikoski et al. Phys. Rev. Lett. 90, 024501 (2003)

    Google Scholar 

  23. S.S. Manna, J. Phys. A 24, L363 (1992); S.S. Manna, J. Stat. Phys. 59, 509 (1990)

    Google Scholar 

  24. T. Hwa, M. Kardar, Phys. Rev. A 45, 7002 (1992)

    Google Scholar 

  25. M. Alava, A.K. Chattopadhyay, Phys. Rev. E 69, 016104 (2004)

    Google Scholar 

  26. A. Vespignani et al. , Phys. Rev. E 62, 4564 (2000)

    Google Scholar 

  27. M.J. Alava, K.B. Lauritsen, Europhys. Lett. 53, 563 (2001)

    Google Scholar 

  28. N.-N. Pang, N.Y. Liang, Phys. Rev. E 56, 1461 (1997)

    Google Scholar 

  29. M. Paczuski, S. Maslov, P. Bak, Phys. Rev. E 53, 414 (1996)

    Google Scholar 

  30. S. Lübeck, Phys. Rev. E 66, 046114, (2002); J. Kockelkoren, H. Chaté, cond-mat/0306039

    Google Scholar 

  31. C. Tebaldi, M. De Menech, A.L. Stella, Phys. Rev. Lett. 83, 3952 (1999)

    Google Scholar 

  32. R. Dickman, J.M.M. Campelo, Phys. Rev. E 67, 066111 (2003); cond-mat/0301054

    Google Scholar 

  33. R. Sánchez et al. Phys. Rev. Lett. 90, 185005 (2003)

  34. V. Antoni et al. , Phys. Rev. Lett. 87, 045001 (2001)

    Google Scholar 

  35. See e.g. [4,29]; A. Montakhab, J.M. Carlson Phys. Rev. E 58, 5608 (1998); M.J. Alava, J. Phys.: Condens. Matter 14, 2353 (2002); S. Lübeck, P.C. Heger, Phys. Rev. E 68, 056102 (2003)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. J. Alava.

Additional information

Received: 13 September 2004, Published online: 23 December 2004

PACS:

05.70.Ln Nonequilibrium and irreversible thermodynamics - 05.40.-a Fluctuation phenomena, random processes, noise, and Brownian motion - 52.25.Fi Transport properties

Rights and permissions

Reprints and permissions

About this article

Cite this article

Laurson, L., Alava, M.J. Local waiting times in critical systems. Eur. Phys. J. B 42, 407–414 (2004). https://doi.org/10.1140/epjb/e2004-00397-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00397-0

Keywords

Navigation