Skip to main content
Log in

Abstract.

A detailed investigation of the Raman response of the inner tube radial breathing modes (RBMs) in double-wall carbon nanotubes is reported. It revealed that the number of observed RBMs is two to three times larger than the number of possible tubes in the studied frequency range. This unexpected increase in Raman lines is attributed to a splitting of the inner tube response. It originates from the possibility that one type of inner tubes may form in different types of outer tubes. In this case, a splitting of lines results since the inner tube RBM frequency depends on the diameter of the outer tube. Finally, a comparison of the inner tube RBMs and the RBMs of tubes in bundles gave clear evidence for a stronger interaction between tubes in a bundle as compared to the interaction between inner and outer tubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Iijima, T. Ichihashi, Nature 363, 603 (1993)

    Article  Google Scholar 

  2. A. Thess, R. Lee, P. Nikolaev, H. Dai, P. Petit, J. Robert, C. Xu, Y.H. Lee, S.G. Kim, A.G. Rinzler et al. , Science 273, 483 (1996)

    Google Scholar 

  3. B.W. Smith, M. Monthioux, D.E. Luzzi, Nature 396, 323 (1998)

    Article  Google Scholar 

  4. B.W. Smith, D.E. Luzzi, Chem. Phys. Lett. 321, 169 (2000)

    Google Scholar 

  5. H. Kataura, Y. Maniwa, T. Kodama, K. Kikuchi, K. Hirahara, K. Suenaga, S. Iijima, S. Suzuki, Y. Achiba, W. Krätschmer, Synthetic Met. 121, 1195 (2001)

    Google Scholar 

  6. F. Simon, H. Kuzmany, H. Rauf, T. Pichler, J. Bernardi, H. Peterlik, L. Korecz, F. Fülöp, A. Jánossy, Chem. Phys. Lett. 383, 362 (2003)

    Google Scholar 

  7. S. Bandow, M. Takizawa, K. Hirahara, M. Yudasaka, S. Iijima, Chem. Phys. Lett. 337, 48 (2001)

    Google Scholar 

  8. S. Bandow, G. Chen, G.U. Sumanasekera, R. Gupta, M. Yudasaka, S. Iijima, P.C. Eklund, Phys. Rev. B 66, 075416 (2002)

    Google Scholar 

  9. R. Pfeiffer, H. Kuzmany, C. Kramberger, C. Schaman, T. Pichler, H. Kataura, Y. Achiba, J. Kürti, V. Zólyomi, Phys. Rev. Lett. 90, 225501 (2003)

    Google Scholar 

  10. C. Kramberger, R. Pfeiffer, H. Kuzmany, V. Zólyomi, J. Kürti, Phys. Rev. B 68, 235404 (2003)

    Google Scholar 

  11. H. Kuzmany, W. Plank, M. Hulman, C. Kramberger, A. Grüneis, T. Pichler, H. Peterlik, H. Kataura, Y. Achiba, Eur. Phys. J. B 22, 307 (2001)

    Google Scholar 

  12. H. Kuzmany, R. Pfeiffer, C. Kramberger, T. Pichler, X. Liu, M. Knupfer, J. Fink, H. Kataura, Y. Achiba, B.W. Smith et al. , Appl. Phys. A 76, 449 (2003)

    Article  Google Scholar 

  13. X. Liu, T. Pichler, M. Knupfer, M.S. Golden, J. Fink, H. Kataura, Y. Achiba, K. Hirahara, S. Iijima, Phys. Rev. B 65, 045419 (2002)

    Article  Google Scholar 

  14. J.H. Hafner, M.J. Bronikowski, B.R. Azamian, P. Nikolaev, A.G. Rinzler, D.T. Colbert, K.A. Smith, R.E. Smalley, Chem. Phys. Lett. 296, 195 (1998)

    Google Scholar 

  15. P. Nikolaev, M.J. Bronikowski, R.K. Bradley, F. Rohmund, D.T. Colbert, K.A. Smith, R.E. Smalley, Chem. Phys. Lett. 313, 91 (1999)

    Article  Google Scholar 

  16. V.N. Popov, L. Henrard, Phys. Rev. B 65, 235415 (2002)

    Google Scholar 

  17. J.P. Lu, X.-P. Li, R.M. Martin, Phys. Rev. Lett. 68, 1551 (1992)

    Google Scholar 

  18. R.A. Jishi, L. Venkataraman, M.S. Dresselhaus, G. Dresselhaus, Chem. Phys. Lett. 209, 77 (1993)

    Google Scholar 

  19. J. Kürti, G. Kresse, H. Kuzmany, Phys. Rev. B 58, R8869 (1998)

  20. L. Henrard, E. Hernández, P. Bernier, A. Rubio, Phys. Rev. B 60, R8521 (1999)

  21. E. Dobardžić, J. Maultzsch, I. Milošević, C. Thomsen, M. Damnjanović, Phys. Stat. Sol. (b) 237, R7 (2003)

  22. A. Jorio, R. Saito, J.H. Hafner, C.M. Lieber, M. Hunter, T. McClure, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. Lett. 86, 1118 (2001)

    Google Scholar 

  23. S.M. Bachilo, M.S. Strano, C. Kittrell, R.H. Hauge, R.E. Smalley, R.B. Weisman, Science 298, 2361 (2002)

    Article  Google Scholar 

  24. L. Henrard, V.N. Popov, A. Rubio, Phys. Rev. B 64, 205403 (2001)

    Google Scholar 

  25. M. Abe, H. Kataura, H. Kira, T. Kodama, S. Suzuki, Y. Achiba, K.-I. Kato, M. Takata, A. Fujiwara, K. Matsuda et al. , Phys. Rev. B 68, 041405(R) (2003)

    Google Scholar 

  26. F. Simon, R. Pfeiffer, C. Kramberger, M. Holzweber, H. Kuzmany, The Raman response of double wall carbon nanotubes, arXiv:physics.cond-mat/0404110 (2004a)

  27. M. Machón, S. Reich, J. Maultzsch, P. Ordejón, C. Thomsen, in Proceedings of the IWPEPNM (2004), pp. 381-384

  28. J.P. Lu, W. Yang, Phys. Rev. B 49, 11421 (1994)

    Google Scholar 

  29. F. Simon, A. Kukovecz, C. Kramberger, R. Pfeiffer, F. Hasi, H. Kuzmany, H. Kataura, Diameter selective characterization of single-wall carbon nanotubes, arXiv:physics.cond-mat/0403179 (2004b)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Pfeiffer.

Additional information

Received: 15 September 2004, Published online: 23 December 2004

PACS:

81.07.De Nanotubes - 81.05.Tp Fullerenes and related materials - 78.30.Na Fullerenes and related materials

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pfeiffer, R., Kramberger, C., Simon, F. et al. Interaction between concentric tubes in DWCNTs. Eur. Phys. J. B 42, 345–350 (2004). https://doi.org/10.1140/epjb/e2004-00389-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00389-0

Keywords

Navigation