Skip to main content
Log in

Amorphous to polycrystalline transition in Co\(\mathsf{_x}\)Si \(\mathsf{_{1-x}}\) alloy thin films

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

The transition from amorphous to polycrystalline microstructure has been studied in sputtered Co x Si1-x alloy films by structural, magneto-optical and Nuclear Magnetic Resonance measurements. For \(x \geq 0.76\), Si is diluted into Co without significantly altering the polycrystalline microstructure, composed of a mixture of hcp and fcc grains. However, the fraction of Co atoms that contribute to the Nuclear Magnetic Resonance signal is found to decrease steeply (down to about 60\(\%\) at x = 0.76) suggesting a microscopic segregation of a Si rich phase that induces a large degree of disorder. This is reflected in a harder magnetic behavior and a strong anisotropy dispersion. Below x = 0.75, the transition to an amorphous microstructure results in a sudden increase in the fraction of Co atoms within a ferromagnetic phase, indicating the recovery of the microscopic homogeneity. Also a significant enhancement of the macroscopic magnetic anisotropy is found for amorphous films with compositions right below the transition. Within the amorphous phase a second regime of Si segregation appears characterized by a constant Co local environment and constant magnetic properties. Finally, for x = 0.65 there is a significant Si enrichment in the Co environment and the films become non magnetic for compositions below this point.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Prinz, Science 282, 1660 (1998)

    Article  Google Scholar 

  2. Ph. Mangin, G. Marchal, J. Appl. Phys. 49, 1709 (1978)

    Article  Google Scholar 

  3. J.M. Alameda, C. Contreras, H. Rubio, Phys. Stat. Sol. (a) 85, 511 (1984)

    Google Scholar 

  4. Y. Shimada, H. Kojima, J. Appl. Phys. 47, 4156 (1976)

    Article  Google Scholar 

  5. C.N. Afonso, A.R. Lagunas, F. Briones, S. Girón, J. Magn. Magn. Mater 15-18, 833 (1980)

    Google Scholar 

  6. J.A. Aboaf, R.J. Kobliska, E. Klokholm, IEEE Trans. Magn. 14, 941 (1978)

    Article  Google Scholar 

  7. J.A. Carlisle, A. Chaiken, R.P. Michel, L.J. Terminello, J.J. Jia, T.A. Callcott, D.L. Edever, Phys. Rev. B 53, 8824 (1996)

    Article  Google Scholar 

  8. L.M. Alvarez-Prado, G.T. Perez, R. Morales, F.H. Salas, J.M. Alameda, Phys. Rev. B 56, 3306 (1997)

    Article  Google Scholar 

  9. G.J. Strijkers, J.T. Kohlhepp, H.J.M. Swagten, W.J.M. de Jonge, Phys. Rev. Lett. 84, 1812 (2000)

    Article  Google Scholar 

  10. H.C. Herper, P. Weinberger, L. Szunyogh, C. Sommers, Phys. Rev. B 66, 064426 (2002)

    Article  Google Scholar 

  11. J.M. Pruneda, R. Robles, S. Bouarab, J. Ferrer, A. Vega, Phys. Rev. B 65, 024440 (2002)

    Article  Google Scholar 

  12. A.E. White, K.T. Short, R.C. Dynes, J.P. Garno, J.M. Gibson, Appl. Phys. Lett. 50, 95 (1987)

    Article  MATH  Google Scholar 

  13. H. von Kanel, C. Schwarz, S. Goncalves-Conto, E. Muller, L. Miglio, F. Tavazza, G. Malegori, Phys. Rev. Lett. 74, 1163 (1995)

    Article  Google Scholar 

  14. G. Ottaviani, K.N. Tu, C. Nobili, J. Appl. Phys. 62, 2290 (1987)

    Article  Google Scholar 

  15. O. Ersen, V. Pierron-Bohnes, M.-H. Tuilier, C. Pirri, L. Khouchaf, M. Gailhanou, Phys. Rev. B 67, 094116 (2003)

    Article  Google Scholar 

  16. J.Y. Shin, S.W. Park, H.K. Baik, Thin Solid Films 292, 31 (1997)

    Article  Google Scholar 

  17. W.W. Wu, T.F. Chiang, S.L. Cheng, S.W. Lee, L.J. Chen, Y.H. Peng, H.H. Cheng, Appl. Phys. Lett. 81, 820 (2002)

    Article  Google Scholar 

  18. S.B. Herner, M. Mahajani, M. Konevecki, E. Kuang, S. Radigan, S.V. Dunton, Appl. Phys. Lett. 82, 4163 (2003)

    Article  Google Scholar 

  19. J.M. Fallon, C.A. Faunce, P.J. Grundy, J. Phys.: Condens. Matter 12, 4075 (2000)

    Article  Google Scholar 

  20. Y.Q. Liu, G. Shao, K.P. Homewood, J. Appl. Phys. 90, 724 (2001)

    Article  Google Scholar 

  21. J.H. Cai, W. Yang, T.J. Zhou, G. Gu, Y.W. Du, Appl. Phys. Lett. 74, 85 (1999)

    Article  Google Scholar 

  22. P. Ruterana, P. Houdy, P. Boher, J. Appl. Phys. 68, 1033 (1990)

    Article  Google Scholar 

  23. J.M. Fallon, C.A. Faunce, P.J. Grundy, J. Appl. Phys. 88, 2400 (2000)

    Article  Google Scholar 

  24. W. Lur, L.J. Chen, Appl. Phys. Lett. 54, 1217 (1989)

    Article  Google Scholar 

  25. P.J. Grundy, J.M. Fallon, H.J. Blythe, Phys. Rev. B 62, 9566 (2000)

    Article  Google Scholar 

  26. J. Enkovaara, A. Ayuela, R.M. Nieminen, Phys. Rev. B 62, 16018 (2000)

    Article  Google Scholar 

  27. K. Inomata, Y. Saito, J. Appl. Phys. 81, 5344 (1997)

    Article  Google Scholar 

  28. J.M. Alameda, F. Lopez, Phys. Stat. Sol. (a) 69, 757 (1982)

    Google Scholar 

  29. H. Hoffmann, Phys. Stat. Sol. 33, 175 (1969)

    Google Scholar 

  30. P. Panissod, J.P. Jay, C. Mény, M. Wojcik, E. Jedryka, Hyperfine Interact. 97-98, 75 (1996)

  31. G.J. van Gurp, J. Appl. Phys. 46, 1922 (1975); J.L. Bubendorff, C. Mény, E. Beaurepaire, P. Panissod, J.P. Bucher, Eur. Phys. J. B 17, 635 (2000)

    Article  Google Scholar 

  32. K. Ishida, T. Nishizawa, in Binary Alloy Phase Diagrams, Vol. 2, edited by T.B. Massalski, H. Okamoto, P.R. Subramanian, L. Kacprzak (ASM International, 1996), p. 1235

  33. A.K. Zvezdin, V.A. Kotov, Modern Magnetooptics and Magnetooptical Materials (Institute of Physics, Bristol, 1997)

  34. J.M. Alameda, J.F. Fuertes, D. Givord, A. Liénard, B. Martínez, M.A. Moreu, J. Tejada, J. Phys. Colloq. France 49, C8-1789 (1988)

    Google Scholar 

  35. M. Prutton, Thin Ferromagnetic Films (Butterworths, London, 1964), p. 103

  36. P.C. Riedi, R.G. Scurlock, J. Appl. Phys. 39, 1241 (1968)

    Article  Google Scholar 

  37. H.A.M. de Gronckel, Ph.D. thesis, Eindhoven University of Technology, 1993

  38. H.A.M. de Gronckel, P.J.H. Bloemen, E.A.M. van Alphen, W.J.M. de Jonge, Phys. Rev. B 49, 11327 (1994)

    Article  Google Scholar 

  39. A. Michel, V. Pierron-Bohnes, J.-P. Jay, P. Panissod, S. Lefebvre, M. Bessiere, H.E. Fischer, G. Van Tendeloo, Eur. Phys. J. B 19, 225 (2001)

    Article  Google Scholar 

  40. P. Panissod, in Frontiers in Magnetism of Reduced Dimension Systems, NATO ASI Series 49, edited by Bar’yakhtar, Wigen, Lesnik (Kluwer Academic, Dodrecht, 1998), p. 225

  41. M. Velez, S.M. Valvidares, J. Diaz, R. Morales, J.M. Alameda, IEEE Trans. Magn. 38, 3078 (2002)

    Article  Google Scholar 

  42. H. Riedel, Phys. Stat. Sol. (a) 24, 449 (1974); J.M. Alameda, M.C. Contreras, F. Carmona, F. Lopez, Phys. Stat. Sol. A 107, 329 (1988)

    Google Scholar 

  43. R. Alben, J.J. Becker, M.C. Chi, J. Appl. Phys. 49, 1653 (1978)

    Article  Google Scholar 

  44. R. Harris, M. Plischke, M.J. Zuckermann, Phys. Rev. Lett. 31, 160 (1973)

    Article  Google Scholar 

  45. J.M. Alameda, D. Givord, R. Lemaire, Q. Lu, J. Appl. Phys. 52, 2079 (1981)

    Article  Google Scholar 

  46. J.M. Alameda, F. Lopez, Phys. Stat. Sol. (a) 69, 757 (1982)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Vélez.

Additional information

Received: 26 July 2004, Published online: 5 November 2004

PACS:

75.50.Kj Amorphous and quasicrystalline magnetic materials - 75.30.Gw Magnetic anisotropy - 76.60.-k Nuclear magnetic resonance and relaxation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vélez, M., Mény, C., Valvidares, S.M. et al. Amorphous to polycrystalline transition in Co\(\mathsf{_x}\)Si \(\mathsf{_{1-x}}\) alloy thin films. Eur. Phys. J. B 41, 517–524 (2004). https://doi.org/10.1140/epjb/e2004-00345-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00345-0

Keywords

Navigation