Skip to main content
Log in

The electronic contribution to the specific heat of NdBa \(\mathsf{_2}\mathsf{Cu_3}\mathsf{O_{6 + x}}\)

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

From measurements of the specific heat of \(\mathrm{NdBa_2Cu_3O_{6 + \mathnormal{x}}}\) in the temperature range between 20 K and 300 K the electronic contribution C e (T)/T has been derived. The results depend strongly on the assumptions made for the normal-state reference, especially the phonon contribution. Taking into account entropy conservation between the superconductor and a hypothetical normal-state reference, we found a temperature independent electronic contribution of this normal-state reference without any sign of a pseudogap for both optimum doped and underdoped samples. For oxygen concentrations between x = 0.79 and x = 0.89 a broad hump in C e (T)/T is observed around 120 K, which we ascribe to pair formation above T c . The dependence of the hole concentration n h in the copper oxide planes on the oxygen concentration x in the copper oxide chains was calculated by means of bond-valence sums. We found that the optimum doping of the copper oxide planes is n h,opt = 0.24 for \(\mathrm{\mathnormal{R}Ba_2Cu_3O_{6 + \mathnormal{x}}}\) (R = Nd, Y) irrespective of the element on the rare-earth site.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.J. Tao, F. Lu, E.L. Wolf, Physica C 282-287, 1507 (1997)

  2. Ch. Renner, B. Revaz, J.-Y. Genoud, K. Kadowaki, Ø. Fischer, Phys. Rev. Lett. 80, 149 (1998)

    Article  Google Scholar 

  3. J. Rossat-Mignod, L.P. Regnault, C. Vettier, P. Bourges, P. Burlet, J. Bossy, J.Y. Henry, G. Lapertot, Physica C 185-189, 86 (1991)

  4. H. Ding, T. Yokoya, J.C. Campuzano, T. Takahashi, M. Randeria, M.R. Norman, T. Mochiku, K. Kadowaki, J. Giapintzakis, Nature 382, 51 (1996)

    Article  Google Scholar 

  5. A.G. Loeser, Z.-X. Shen, D.S. Dessau, D.S. Marshall, C.H. Park, P. Fournier, A. Kapitulnik, Science 273, 325 (1996)

    Google Scholar 

  6. W.W. Warren, Jr., R.E. Walstedt, G.F. Brennert, R.J. Cava, R. Tycko, R.F. Bell, G. Dabbagh, Phys. Rev. Lett. 62, 1193 (1989)

    Article  Google Scholar 

  7. R.E. Walstedt, W.W. Warren, Jr., R.F. Bell, R.J. Cava, G.P. Espinosa, L.F. Schneemeyer, J.V. Waszczak, Phys. Rev. B 41, 9574 (1990)

    Article  Google Scholar 

  8. M. Takigawa, A.P. Reyes, P.C. Hammel, J.D. Thompson, R.H. Heffner, Z. Fisk, K.C. Ott, Phys. Rev. B 43, 247 (1991)

    Article  Google Scholar 

  9. B. Batlogg, H.Y. Hwang, H. Takagi, R.J. Cava, H.L. Kao, J. Kwo, Physica C 235-240, 130 (1994)

  10. J.W. Loram, K.A. Mirza, J.R. Cooper, W.Y. Liang, Phys. Rev. Lett. 71, 1740 (1993)

    Article  Google Scholar 

  11. J.W. Loram, K.A. Mirza, J.M. Wade, J.L. Tallon, Physica C 235-240, 1735 (1994)

  12. J.W. Loram, J. Luo, J.R. Cooper, W.Y. Liang, J.L. Tallon, J. Phys. Chem. Solids 62, 59 (2001)

    Article  Google Scholar 

  13. H. Lütgemeier, S. Schmenn, P. Meuffels, O. Storz, R. Schöllhorn, Ch. Niedermayer, I. Heinmaa, Yu. Baikov, Physica C 267, 191 (1996)

    Google Scholar 

  14. G. Flor, G. Chiodelli, G. Spinolo, P. Ghigna, Physica C 316, 13 (1999)

    Google Scholar 

  15. P. Nagel, V. Pasler, C. Meingast, A.I. Rykov, S. Tajima, Phys. Rev. Lett. 85, 2376 (2000)

    Article  Google Scholar 

  16. P. Nagel, Wissenschaftliche Berichte FZKA 6661, Forschungszentrum Karlsruhe (2001)

  17. H. Leibrock, Wissenschaftliche Berichte, FZKA 6819, Forschungszentrum Karlsruhe (2003)

  18. neutron diffraction experiments at the four-circle diffractometer 5C2 at the Orphée reactor, Laboratoire Léon Brillouin, Laboratoire commun CEA-CNRS, CE Saclay

  19. T.B. Lindemer, E.D. Specht, P.M. Martin, M.L. Flitcroft, Physica C 255, 65 (1995)

    Google Scholar 

  20. D.L. Martin, Rev. Sci. Instrum. 58, 639 (1987)

    Article  Google Scholar 

  21. K.N. Yang, J.M. Ferreira, B.W. Lee, M.B. Maple, W.-H. Li, J.W. Lynn, R.W. Erwin, Phys. Rev. B 40, 10963 (1989)

    Article  Google Scholar 

  22. H. Drößler, H.-D. Jostarndt, J. Harnischmacher, J. Kalenborn, U. Walter, A. Severing, W. Schlabitz, E. Holland-Moritz, Z. Phys. B 100, 1 (1996)

    Article  Google Scholar 

  23. A.A. Martin, T. Ruf, T. Strach, M. Cardona, Th. Wolf, Phys. Rev. B 58, 14349 (1998)

    Article  Google Scholar 

  24. J.W. Lynn, B. Keimer, C. Ulrich, C. Bernhard, J.L. Tallon, Phys. Rev. B 61, R14964 (2000)

  25. A.H. Moudden, G. Shirane, J.M. Tranquada, R.J. Birgeneau, Y. Endoh, K. Yamada, Y. Hidaka, T. Murakami, Phys. Rev. B 38, 8720 (1988)

    Article  Google Scholar 

  26. A. Abragam, B. Bleaney, Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, Oxford, 1970), p. 459

  27. C. Bernhard, J.L. Tallon, Ch. Niedermayer, Th. Blasius, A. Golnik, E. Brücher, R.K. Kremer, D.R. Noakes, C.E. Stronach, E.J. Ansaldo, Phys. Rev. B 59, 14099 (1999)

    Article  Google Scholar 

  28. C.-S. Jee, D. Nichols, A. Kebede, S. Rahman, J.E. Crow, A.M. Ponte Goncalves, T. Mihalisin, G.H. Myer, I. Perez, R.E. Salomon, P. Schlottmann, S.H. Bloom, M.V. Kuric, Y.S. Yao, R.P. Guertin, J. Supercond. 1, 63 (1988)

    Google Scholar 

  29. C. Meingast, V. Pasler, P. Nagel, A. Rykov, S. Tajima, P. Olsson, Phys. Rev. Lett. 86, 1606 (2001)

    Article  Google Scholar 

  30. V.J. Emery, S.A. Kivelson, O. Zacher, Phys. Rev. B 56, 6120 (1997); E.W. Carlson, V.J. Emery, S.A. Kivelson, D. Orgad, cond-mat/0206217 v1 (2002)

    Article  Google Scholar 

  31. J.L. Tallon, Physica C 168, 85 (1990)

    Google Scholar 

  32. I.D. Brown, D. Altermatt, Acta Cryst. B 41, 244 (1985)

    Article  Google Scholar 

  33. I.D. Brown, J. Solid State Chem. 82, 122 (1989)

    Article  Google Scholar 

  34. I.D. Brown, J. Solid State Chem. 90, 155 (1991)

    Article  Google Scholar 

  35. Y. Eckstein, C.G. Kuper, Physica B 284-288, 403 (2000)

  36. M. Merz, N. Nücker, P. Schweiss, S. Schuppler, C.T. Chen, V. Chakarian, J. Freeland, Y.U. Idzerda, M. Kläser, G. Müller-Vogt, Th. Wolf, Phys. Rev. Lett. 80, 5192 (1998)

    Article  Google Scholar 

  37. S. Schlachter, diploma thesis, University of Karlsruhe (1997), p. 36

  38. J.M. Tranquada, B.J. Sternlieb, J.D. Axe, Y. Nakamura, S. Uchida, Nature 375, 561 (1995)

    Article  Google Scholar 

  39. C. Stock, W.J.L. Buyers, R. Liang, D. Peets, Z. Tun, D. Bonn, W.N. Hardy, R.J. Birgeneau, Phys. Rev. B 69, 014502 (2004)

    Article  Google Scholar 

  40. S.I. Schlachter, U. Tutsch, W.H. Fietz, K.-P. Weiss, H. Leibrock, K. Grube, Th. Wolf, B. Obst, P. Schweiss, H. Wühl, Int. J. Mod. Phys. B 14, 3673 (2000)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U. Tutsch.

Additional information

Received: 17 September 2004, Published online: 5 November 2004

PACS:

65.40.Ba Heat capacity - 74.25.Bt Thermodynamic properties - 74.72.-h Cuprate superconductors (high-T c and insulating parent compounds)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tutsch, U., Schweiss, P., Wühl, H. et al. The electronic contribution to the specific heat of NdBa \(\mathsf{_2}\mathsf{Cu_3}\mathsf{O_{6 + x}}\) . Eur. Phys. J. B 41, 471–478 (2004). https://doi.org/10.1140/epjb/e2004-00340-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00340-5

Keywords

Navigation