Advertisement

Problems with fitting to the power-law distribution

  • M. L. Goldstein
  • S. A. Morris
  • G. G. Yen
Article

Abstract.

This short communication uses a simple experiment to show that fitting to a power law distribution by using graphical methods based on linear fit on the log-log scale is biased and inaccurate. It shows that using maximum likelihood estimation (MLE) is far more robust. Finally, it presents a new table for performing the Kolmogorov-Smirnov test for goodness-of-fit tailored to power-law distributions in which the power-law exponent is estimated using MLE. The techniques presented here will advance the application of complex network theory by allowing reliable estimation of power-law models from data and further allowing quantitative assessment of goodness-of-fit of proposed power-law models to empirical data.

Keywords

Empirical Data Maximum Likelihood Estimation Likelihood Estimation Complex Network Reliable Estimation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Albert, H. Jeong, A.-L. Barabási, Nature 401, 130 (1999)CrossRefGoogle Scholar
  2. 2.
    H. Jeong, B. Tombor, R. Albert, Z.N. Oltval, A.-L. Barabási, Nature 407, 651 (2000)CrossRefPubMedGoogle Scholar
  3. 3.
    M. Faloutsos, P. Faloutsos, C. Faloutsos, Computer Commun. Rev. 29, 251 (1999)Google Scholar
  4. 4.
    S. Redner, Eur. Phys. J. B 4, 131 (1998)CrossRefGoogle Scholar
  5. 5.
    F. Liljeros, C.R. Edling, L.A.N. Amaral, H.E. Stanley, Y. Aberg, Nature 411, 907 (2001)CrossRefGoogle Scholar
  6. 6.
    N.L. Johnson, S. Kotz, A.W. Kemp, Univariate discrete distributions (John Wiley & Sons, New York, 1992)Google Scholar
  7. 7.
    J.-L. Guilleaume, M. Latapy, Information Processing Lett. 90, 215 (2004)CrossRefGoogle Scholar
  8. 8.
    R. Albert, A.-L. Barabási, Rev. Mod. Phys. 74, 47 (2002)CrossRefMathSciNetGoogle Scholar
  9. 9.
    M.E.J. Newman, SIAM Rev. 45, 157 (2003)Google Scholar
  10. 10.
    J.H. Jones, M.S. Handcock, Proc. Royal Soc. London Series B-Biological Sciences 270, 1123 (2003)CrossRefGoogle Scholar
  11. 11.
    J. Park, M.E.J. Newman, Phys. Rev. E 68, 036122 (2003)CrossRefGoogle Scholar
  12. 12.
    A. Walther, Acta Mathematica 48, 393 (1926)zbMATHGoogle Scholar
  13. 13.
    P.T. Nicholls, J. Am. Soc. Information Sci. 40, 379 (1989)Google Scholar
  14. 14.
    A.N. Kolmogorov, Giornale dell’ Instituto Italiano degli Attuari 4, 77 (1933)Google Scholar
  15. 15.
    M.L. Pao, Information Processing and Management 21, 305 (1985)CrossRefGoogle Scholar
  16. 16.
    W.J. Conover, Practical nonparametric statistics (Wiley, New York, 1999)Google Scholar
  17. 17.
    H.W. Lilifoers, J. Am. Stat. Asso. 62, 399 (1967)Google Scholar
  18. 18.
    H.W. Lilifoers, J. Am. Stat. Asso. 64, 387 (1969)Google Scholar
  19. 19.
    A.J. Lotka, J. Washington Academy of Sciences 16, 317 (1926)Google Scholar

Copyright information

© Springer-Verlag Berlin/Heidelberg 2004

Authors and Affiliations

  1. 1.School of Electrical and Computer EngineeringOklahoma State UniversityStillwaterUSA

Personalised recommendations