Skip to main content
Log in

Two dimensional fluoride ion conductor RbSn\(_\mathsf{2}\)F\(_\mathsf{5}\) studied by impedance spectroscopy and \(^\mathsf{19}\)F, \(^\mathsf{119}\)Sn, and \(^\mathsf{87}\)Rb NMR

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

RbSn2F5 is a two-dimensional fluoride ion conductor. It undergoes a first-order phase transition to a superionic state at 368 K. The structure of the low temperature phase has been determined from the Rietveld analysis of the X-ray powder diffraction. The dynamic properties of the fluoride ions in RbSn2F5 have been studied by impedance spectroscopy and solid state NMR. The dc ionic conductivity of this sample shows an abrupt increase at the phase transition temperature. We have obtained the hopping frequency and the concentration of the charge carriers (F- ions) at different temperatures from the analysis of the conductivity spectra using Almond-West formalism. The estimated values of the charge carriers’ concentration agree well with that determined from the structure and were found to be independent of temperature. The relatively small value of the power-law exponent, \(n \approx 0.55\), supports the two-dimensional property of the investigated material. Furthermore, 19F NMR with simulation has suggested the diffusive motions of the fluoride ions between different sites. In contrast, 119Sn and 87Rb NMR spectra below 250 K supported the intrinsic disordered nature due to the random distribution of the fluoride ion vacancies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Brinkmann, Progr. NMR Spectrosc. 24, 527 (1992)

    Article  Google Scholar 

  2. S. Martin, Mater. Chem. Phys. 23, 225 (1989), and references therein

    Article  Google Scholar 

  3. C.A. Angell, Solid State Ionics 18/19, 72 (1985)

  4. K.L. Ngai, Comments Solid State Phys. 9, 127 (1979); K.L. Ngai, Comments Solid State Phys. 9, 141 (1980)

    Google Scholar 

  5. A. Pradel, M. Ribes, J. Non-Cryst. Solids 131-133, 1063 (1992)

  6. A.K. Jonscher, Dielectric Relaxation in Solids (Chelsia Dielectric, London, 1983)

  7. A.K. Jonschor, Nature (London) 267, 673 (1977)

    Article  ADS  Google Scholar 

  8. D.P. Almond, A.R. West, J. Non-Cryst. Solids 88, 222 (1986)

    Article  ADS  Google Scholar 

  9. J. Dyre, J. Non-Cryst. Solids 153, 219 (1991)

    Article  ADS  Google Scholar 

  10. S.R. Elliott, J. Non-Cryst. Solids 170, 97 (1994)

    Article  ADS  Google Scholar 

  11. B. Roling, A. Happe, K. Funke, M. D. Ingram, Phys. Rev. Lett. 78, 2160 (1997)

    Article  ADS  Google Scholar 

  12. D.L. Sidebottom, P.F. Green, R.K. Brow, Phys. Rev. B 56, 170 (1997)

    Article  ADS  Google Scholar 

  13. B. Roling, Solid State Ionics 105, 185 (1998)

    Article  Google Scholar 

  14. W.D. Basler, I.V. Murin, S.V. Chernov, Z. Naturforsch. a 36, 519 (1981)

    ADS  Google Scholar 

  15. K. Hirokawa, H. Kitahara, Y. Furukawa, D. Nakamura, Ber. Bunsenges. Phys. Chem. 95, 651 (1991)

    Google Scholar 

  16. G. Bergerhoff, H. Namgung, Acta Crystallogr. B 34, 699 (1978)

    Article  Google Scholar 

  17. R.R. MacDonald, A.C. Larson, D.T. Cormer, Acta Crystallogr. 17, 1104 (1964)

    Article  Google Scholar 

  18. J.P. Battut, J. Dupuis, S. Soudani, W. Granier, S. Vilminot, H. Wahbi, Solid State Ionics 22, 247 (1987)

    Article  Google Scholar 

  19. S. Vilminot, R. Bachmann, H. Schulz, Solid State Ionics 9/10, 559 (1983)

    Google Scholar 

  20. F. Izumi, T. Ikeda, Mater. Sci. Forum 321-324, 198(2000)

  21. MathSoft International, Knightway House, Park Street, Bagshot Surrey, GU19 5AQ, United Kingdom

  22. S. Vilminot, H. Schulz, Acta Crystallogr. B 44, 233(1988)

    Article  Google Scholar 

  23. K. Yamada, M.M. Ahmad, H. Ohki, T. Okuda, H. Ehrenberg, H. Fuess, Solid State Ionics 167, 301 (2004)

    Article  Google Scholar 

  24. M.M. Ahmad, K. Yamada, T. Okuda, J. Phys.: Condens. Matter 14, 7233 (2002)

    Article  ADS  Google Scholar 

  25. D.P. Almond, A.R. West, Nature 306, 456 (1983); D.P. Almond, G.K. Ducan, A.R. West, Solid State Ionics 8, 159 (1983); J. Non-Cryst. Solids 74, 285 (1985); D.P. Almond, A.R. West, R. Grant, Solid State Commun. 44, 1277 (1982)

    Article  ADS  Google Scholar 

  26. E.F. Hairetdinov, N.F. Uvarov, H.K. Patel, S.W. Martin, Phys. Rev. B 50, 13259 (1994)

    Article  ADS  Google Scholar 

  27. K.L. Ngai, R.W. Rendell, H. Jain, Phys. Rev. B 30, 2133 (1984)

    Article  ADS  Google Scholar 

  28. K. Funke, Prog. Solid State Chem. 22, 111 (1993)

    Article  Google Scholar 

  29. P. Maass, M. Meyer, A. Bunde, Phys. Rev. B 51, 8164 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  30. D.L. Sidebottom, Phys. Rev. Lett. 83, 983 (1999)

    Article  ADS  Google Scholar 

  31. T. Okuda, K. Saisho, Y. Ogiso, K. Yamada, J. Chikami, G. Miehe, H. Ehrenberg, H. Fuess, in Proceedings of the 7th Asian Conference on Solid State Ionics, Materials and Devices, Fuzhou, 2000, edited by B.V.R. Chowdari, W. Wang (World Scientific, Fuzhou, 2000), p. 33

  32. K. Schmidt-Rohr, H.W. Spiess, Multidimensional Solid-State NMR and Polymers (Academic Press, London, 1994)

  33. A. Abragam, Principles of Nuclear Magnetism (Oxford University Press, London, 1961), Chap. X

  34. H. Yano, Y. Furukawa, Y. Kuranaga, K. Yamada, T. Okuda, J. Mol. Struct. 520, 173 (2000)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Ahmad.

Additional information

Received: 25 May 2004, Published online: 12 August 2004

PACS:

66.30.Hs Self-diffusion and ionic conduction in nonmetals - 77.22.Gm Dielectric loss and relaxation - 76.60.-k Nuclear magnetic resonance and relaxation

M.M. Ahmad: Permanent address: Physics Department, Faculty of Education, Assiut University in The New Valley, El-Kharga, Egypt

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, K., Ahmad, M.M., Ogiso, Y. et al. Two dimensional fluoride ion conductor RbSn\(_\mathsf{2}\)F\(_\mathsf{5}\) studied by impedance spectroscopy and \(^\mathsf{19}\)F, \(^\mathsf{119}\)Sn, and \(^\mathsf{87}\)Rb NMR. Eur. Phys. J. B 40, 167–176 (2004). https://doi.org/10.1140/epjb/e2004-00255-1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00255-1

Keywords

Navigation