Skip to main content
Log in

Electrical resistivity in the ferromagnetic metallic state of La-Ca-MnO\(\mathsf{_{3}}\): Role of electron-phonon interaction

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

The temperature-dependent resistivity of the perovskite manganites La1-x Ca x MnO3, with x = 0.33, is theoretically analysed within the framework of the classical electron-phonon model of resistivity, i.e., the Bloch-Gruneisen model. Due to inherent acoustic (low-frequency) phonons (\(\omega_{ac})\) as well as high-frequency optical phonons (\(\omega_{op})\), the contributions to the resistivity have first been estimated. The acoustic phonons of the oxygen-breathing mode yield a relatively larger contribution to the resistivity compared to the contribution of optical phonons. Furthermore, the nature of phonons changes around T = 167 K exhibiting a crossover from an acoustic to optical phonon regime with elevated temperature. The contribution to resistivity estimated by considering both phonons, i.e. \(\omega_{ac}\) and \(\omega_{op}\), when subtracted from thin film data, infers a power temperature dependence over most of the temperature range. The quadratic temperature dependence of \(\rho_{\it diff.} = [ \rho_{\exp} . - \{\rho_{0} + \rho_{e\text{-}ph} (= \rho_{ac} + \rho_{op}) \} ]\) is understood in terms of electron-electron scattering. Moreover, in the higher temperature limit, the difference can be varies linearly with T 4.5 in accordance with the electron-magnon scattering in the double exchange process. Within the proposed scheme, the present numerical analysis of temperature dependent resistivity shows similar results as those revealed by experiment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.B. Salamon, M. Jaime, Rev. Mod. Physics 73, 583 (2001)

    Article  ADS  Google Scholar 

  2. G.H. Jonker, J.H. Van Santen, Physica 16, 337 (1950); J.H. Van Santen, G.H. Jonker, Physica 16, 599 (1950)

    Article  ADS  Google Scholar 

  3. C. Zener, Phys. Rev. 82, 403 (1951); P.W. Anderson, H. Hasegawa, Phys. Rev. 100, 675 (1955)

    Article  ADS  Google Scholar 

  4. A.J. Millis, P.B. Littlewood, B.I. Shrainman, Phys. Rev. Lett. 74, 5144 (1995); A.J. Millis, B.I. Shrainman, R. Mueller, Phys. Rev. Lett. 75, 175 (1996)

    Article  ADS  Google Scholar 

  5. P. Dai, J. Zhang, H.A. Mook, S.-H. Liou, P. A. Dowben, E. W. Plummer, Phys. Rev. B 54, R3694 (1996)

  6. M.V. Abrashev, V.G. Avanov, M.N. Iliev, R.A. Chakalov, R.I. Chakalova, C. Thomsen, Phys. Status Solidi (b) 215, 631 (1999); M.V. Abrashev, A.P. Litvinchuk, M.N. Iliev, R.L. Meng, V.N. Popov, V.G. Ivanov, R.A. Chakalov, C. Thomsen, Phys. Rev. B 59, 4146 (1999)

    Article  ADS  Google Scholar 

  7. M.N. Iliev, M.V. Abrashev, H.G. Lee, V.N. Popov, Y.Y. Sun, C. Thomsen, R.L. Meng, C.W. Chu, Phys. Rev. B 57, 2872 (1998)

    Article  ADS  Google Scholar 

  8. J.W. Lynn, R.W. Erwin, J.A. Borchers, Q. Huang, A. Santoro, Phys. Rev. Lett. 76, 4046 (1996)

    Article  ADS  Google Scholar 

  9. K. Kubo, N. Ohata, J. Phys. Soc. Jpn 33, 21 (1972)

    Article  ADS  Google Scholar 

  10. A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura, Phys. Rev. B 51, 14103 (1995)

    Article  ADS  Google Scholar 

  11. P. Schiffer, A.P. Ramirez, W. Bao, S.-W. Cheong, Phys. Rev. Lett. 75, 3336 (1995)

    Article  ADS  Google Scholar 

  12. M. Jaime, P. Lin, M.B. Salamon, P.D. Han, Phys. Rev. B 58, R5901 (1998)

  13. Guo-meng Zhao, V. Smolyaninova, W. Prellier, H. Keller, Phys. Rev. Lett. 84, 6086 (2000)

    Article  ADS  Google Scholar 

  14. A.M. Oleś, Louis F. Feiner, Phys. Rev. B 65, 052414 (2002)

    Article  ADS  Google Scholar 

  15. E. Granado, N.O. Moreno, A. García, J.A. Sanjurjo, C. Rettori, I. Torriani S.B. Oseroff, J.J. Neumeier, K.J. McClellan S.-W. Cheong, Y. Tokura, Phys. Rev. B 58, 11435 (1998)

    Article  ADS  Google Scholar 

  16. D. Varshney, K.K. Choudhary, R.K. Singh, Supercond. Sci. Technol. 15, 1119 (2002)

    Article  ADS  Google Scholar 

  17. M. Born, K. Huang, Dynamical theory of crystal lattices (Oxford University Press - London, 1966)

  18. G. Grimvall, The Electrons-Phonon Interaction in Metals (North-Holland Pub. Com. - New York, 1980)

  19. J. Blasco, J. Garcia, J.M. de Teresa, M.R. Ibarra, J. Perez, P.A. Algarabel, C. Marquina, C. Ritter, Phys. Rev. B 55, 8905 (1997)

    Article  ADS  Google Scholar 

  20. D. Varshney, M.P. Tosi, J. Phys. Chem. Solids 61, 683 (2000)

    Article  ADS  Google Scholar 

  21. L. Ghivelder, I. Abrego Castillo, N.M. Alford, G.J. Tomka, P.C. Riedi, J. MacManus-Driscoll, A.K.M. Akther Hossain, L.F. Cohen, J. Magn. Magn. Mater. 189, 274 (1998)

    Article  ADS  Google Scholar 

  22. K.H. Kim, J.Y. Gu, H.S. Choi, G.W. Park, T.W. Noh, Phys. Rev. Lett. 77, 1877 (1996)

    Article  ADS  Google Scholar 

  23. C.H. Booth, F. Bridges, G.H. Kwei, J.M. Lawrence, A.L. Cornelius, J.J. Neumeier, Phys. Rev. Lett. 80, 853 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  24. G.J. Snyder, R. Hiskes, S. DiCarolis, M.R. Beasley, T.H. Geballe, Phys. Rev. B 53, 14434 (1996)

    Article  ADS  Google Scholar 

  25. J.D. Lee, B.I. Min, Phys. Rev. B 55, 12454 (1997); J.D. Lee, B.I. Min, Phys. Rev. B 55, R 14713 (1997)

    Article  ADS  Google Scholar 

  26. A.H. Thompson, Phys. Rev. Lett. 35, 1786 (1975)

    Article  ADS  Google Scholar 

  27. J.M.D. Coey, M. Viret, L. Ranno, K. Ounadjela K, Phys. Rev. Lett. 75, 3910 (1995)

    Article  ADS  Google Scholar 

  28. W.E. Pickett, D.J. Singh, Phys. Rev. B 53, 1146 (1996)

    Article  ADS  Google Scholar 

  29. D. Varshney, N. Kaurav, Eur. Phys. J. B 37, 301 (2004)

    Article  ADS  Google Scholar 

  30. M. Quijada, J. Cerne, J.R. Simpson, H.D. Drew, K.H. Ahn, A.J. Millis, R. Shreekala, R. Ramesh, M. Rajeswari, T. Venkatesan, Phys. Rev. B 58, 16093 (1998)

    Article  ADS  Google Scholar 

  31. P. Fulde, J. Jensen, Phys. Rev. B 27, 4085 (1983)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Varshney.

Additional information

Received: 8 April 2004, Published online: 12 August 2004

PACS:

5.47.Gk Colossal magnetoresistance - 72.15.-v Electronic conduction in metals and alloys - 74.25.Kc Phonons - 75.30.Ds Spin waves

D. Varshney: dvboson.sop@dauniv.ac.in

Rights and permissions

Reprints and permissions

About this article

Cite this article

Varshney, D., Kaurav, N. Electrical resistivity in the ferromagnetic metallic state of La-Ca-MnO\(\mathsf{_{3}}\): Role of electron-phonon interaction. Eur. Phys. J. B 40, 129–136 (2004). https://doi.org/10.1140/epjb/e2004-00251-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00251-5

Keywords

Navigation