Skip to main content
Log in

Residual conductance of correlated one-dimensional nanosystems: A numerical approach

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

We study a method to determine the residual conductance of a correlated system by means of the ground-state properties of a large ring composed of the system itself and a long non-interacting lead. The transmission probability through the interacting region, and thus its residual conductance, is deduced from the persistent current induced by a flux threading the ring. Density Matrix Renormalization Group techniques are employed to obtain numerical results for one-dimensional systems of interacting spinless fermions. As the flux dependence of the persistent current for such a system demonstrates, the interacting system coupled to an infinite non-interacting lead behaves as a non-interacting scatterer, but with an interaction dependent elastic transmission coefficient. The scaling to large lead sizes is discussed in detail as it constitutes a crucial step in determining the conductance. Furthermore, the method, which so far had been used at half filling, is extended to arbitrary filling and also applied to disordered interacting systems, where it is found that repulsive interaction can favor transport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Yao, C.L. Kane, C. Dekker, Phys. Rev. Lett. 84, 2941 (2000)

    Article  Google Scholar 

  2. R.H.M. Smit, C. Untiedt, G. Rubio-Bollinger, R.C. Segers, J.M. van Ruitenbeek, Phys. Rev. Lett. 91, 076805 (2003)

    Article  Google Scholar 

  3. J. Nygård, D.H. Cobden, P.E. Lindelof, Nature 408, 342 (2000)

    Article  Google Scholar 

  4. C. Joachim, J.K. Gimzewski, A. Aviram, Nature 408, 541 (2000)

    Article  Google Scholar 

  5. see e.g. Special issue on Processes in Molecular Wires, edited by P. Hänggi, M. Ratner, S. Yaliraki, Chem. Phys. 281, 111-487 (2002)

    Article  Google Scholar 

  6. D.L. Maslov, M. Stone, Phys. Rev. B 52, R5539 (1995)

  7. I. Safi, H.J. Schulz, Phys. Rev. B 52, R17040 (1995)

  8. Y. Meir, N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992)

    Article  Google Scholar 

  9. S. Datta, Phys. Rev. B 46, 9493 (1992)

    Article  Google Scholar 

  10. J. Favand, F. Mila, Eur. Phys. J. B 2, 293 (1998)

    Article  Google Scholar 

  11. O.P. Sushkov, Phys. Rev. B 64, 155319 (2001)

    Article  Google Scholar 

  12. R.A. Molina, D. Weinmann, R.A. Jalabert, G.-L. Ingold, J.-L. Pichard, Phys. Rev. B 67, 235306 (2003)

    Google Scholar 

  13. V. Meden, U. Schollwöck, Phys. Rev. B 67, 193303 (2003)

    Article  Google Scholar 

  14. V. Meden, S. Andergassen, W. Metzner, U. Schollwöck, K. Schönhammer, Europhys. Lett. 64, 769 (2003)

    Article  Google Scholar 

  15. T. Rejec, A. Ramšak, Phys. Rev. B 68, 035342 (2003)

    Article  Google Scholar 

  16. T. Rejec, A. Ramšak, Phys. Rev. B 68, 033306 (2003)

    Article  Google Scholar 

  17. R. Landauer, IBM J. Res. Dev. 1, 223 (1957)

    MathSciNet  Google Scholar 

  18. M. Büttiker, Phys. Rev. Lett. 57, 1761 (1986)

    Article  Google Scholar 

  19. R. Berkovits, Y. Avishai, Phys. Rev. Lett. 76, 291 (1996)

    Article  Google Scholar 

  20. O.P. Sushkov, Phys. Rev. B 67, 195318 (2003)

    Article  Google Scholar 

  21. G. Chiappe, J.A. Vergés, J. Phys.: Condens. Matter 15, 8805 (2003)

    Article  Google Scholar 

  22. K. Louis, C. Gros, Phys. Rev. B 68, 184424 (2003)

    Article  Google Scholar 

  23. C.L. Kane, M.P.A. Fisher, Phys. Rev. Lett. 68, 1220 (1992)

    Article  Google Scholar 

  24. O.P. Sushkov, private communication (2003)

  25. A.O. Gogolin, N.V. Prokof’ev, Phys. Rev. B 50, 4921 (1994)

    Article  Google Scholar 

  26. H.-F. Cheung, Y. Gefen, E.K. Riedel, W.-H. Shih, Phys. Rev. B 37, 6050 (1988)

    Article  Google Scholar 

  27. S.R. White, Phys. Rev. Lett. 69, 2863 (1992); S.R. White, Phys. Rev. B 48, 10345 (1993)

    Article  Google Scholar 

  28. Density Matrix Renormalization - A New Numerical Method in Physics, edited by I. Peschel, X. Wang, M. Kaulke, K. Hallberg, Lecture Notes in Physics, Vol. 528 (Springer, Berlin, 1999)

  29. P. Schmitteckert, in [28], p. 345

  30. A.J. Leggett, in Granular Nanoelectronics, edited by D.K. Ferry, J.R. Barker, C. Jacoboni, NATO ASI series B, Vol. 251 (Plenum, New York, 1991)

  31. E.P. Wigner, Ann. Math. 53, 36 (1951); E.P. Wigner, Ann. Math. 55, 7 (1952)

    MathSciNet  MATH  Google Scholar 

  32. J.-L. Pichard, G. Benenti, G. Katomeris, F. Selva, X. Waintal, in Exotic States in Quantum Nanostructures, edited by S. Sarkar (Kluwer, Dordrecht 2003); also available as arXiv:cond-mat/0107380

  33. B.L. Altshuler, A.G. Aronov, Solid State Commun. 30, 115 (1979)

    Article  Google Scholar 

  34. A.L. Efros, B.I. Shklovskii, J. Phys. C: Solid State Physics 8, L49 (1975)

  35. P. Schmitteckert, R.A. Jalabert, D. Weinmann, J.-L. Pichard, Phys. Rev. Lett. 81, 2308 (1998)

    Article  Google Scholar 

  36. D. Weinmann, R.A. Jalabert, P. Schmitteckert, J.-L. Pichard, Eur. Phys. J. B 19, 139 (2001)

    Article  Google Scholar 

  37. R.A. Molina, D. Weinmann, J.-L. Pichard, to appear in Europhys. Lett. (2004)

  38. E.R. Mucciolo, R.A. Jalabert, J.-L. Pichard, J. Phys. I France 7, 1267 (1997)

    Article  Google Scholar 

  39. C.W.J. Beenakker, Phys. Rev. B 46, 12841 (1992)

    Article  Google Scholar 

  40. C.J. Lambert, J. Phys.: Condens. Matter 3, 6579 (1991)

    Article  Google Scholar 

  41. C.W.J. Beenakker, Rev. Mod. Phys. 69, 731 (1997)

    Article  Google Scholar 

  42. G.E. Blonder, M. Tinkham, T.M. Klapwijk, Phys. Rev. B 25, 4515 (1982)

    Article  Google Scholar 

  43. M. Büttiker, T.M. Klapwijk, Phys. Rev. B 33, 5114 (1986)

    Article  Google Scholar 

  44. J. Cayssol, T. Kontos, G. Montambaux, Phys. Rev. B 67, 184508 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Molina.

Additional information

Received: 19 January 2004, Published online: 18 June 2004

PACS:

73.23.-b Electronic transport in mesoscopic systems - 71.10.-w Theories and models of many-electron systems - 05.60.Gg Quantum transport - 73.63.Nm Quantum wires

Rights and permissions

Reprints and permissions

About this article

Cite this article

Molina, R.A., Schmitteckert, P., Weinmann, D. et al. Residual conductance of correlated one-dimensional nanosystems: A numerical approach. Eur. Phys. J. B 39, 107–120 (2004). https://doi.org/10.1140/epjb/e2004-00176-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00176-y

Keywords

Navigation