Skip to main content
Log in

Effect of a lattice upon an interacting system of electrons in two dimensions: Breakdown of scaling and decay of persistent currents

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

The ground state of an electron gas is characterized by the interparticle spacing to the effective Bohr radius ratio r s = a/a B *. For polarized electrons on a two dimensional square lattice with Coulomb repulsion, we study the threshold value r s * below which the lattice spacing s becomes a relevant scale and r s ceases to be the scaling parameter. For systems of small ratios s/a B *, s becomes only relevant at small r s (large densities) where one has a quantum fluid with a deformed Fermi surface. For systems of large s/a B *, s plays also a role at large r s (small densities) where one has a Wigner solid, the lattice limiting its harmonic vibrations. The thermodynamic limit of physical systems of different a B * is qualitatively discussed, before quantitatively studying the lattice effects occurring at large r s . Using a few particle system, we compare exact numerical results obtained with a lattice and analytical perturbative expansions obtained in the continuum limit. Three criteria giving similar values for the lattice threshold r s * are proposed. The first one is a delocalization criterion in the Fock basis of lattice site orbitals. The second one uses the persistent current which can depend on the interaction in a lattice, while it becomes independent of the interaction in the continuum limit. The third one takes into account the limit imposed by the lattice to the harmonic vibrations of the electron solid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Gell-Mann, K.A. Brueckner, Phys. Rev. 106, 364 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  2. E. Wigner, Trans. Faraday Soc. 34, 678 (1938)

    Article  Google Scholar 

  3. G. Meissner, H. Namaizawa, M. Voss, Phys. Rev. B 13, 1370 (1976)

    Article  Google Scholar 

  4. W.J. Carr, Phys. Rev. 122, 1437 (1961)

    Article  Google Scholar 

  5. L. Bonsall, A.A. Maradudin, Phys. Rev. B 15, 1959 (1977)

    Article  Google Scholar 

  6. D.M. Ceperley, Phys. Rev. B 18, 3126 (1978)

    Article  Google Scholar 

  7. B. Tanatar, D.M. Ceperley, Phys. Rev. B 39, 5005 (1989)

    Article  Google Scholar 

  8. J. González, Phys. Rev. B 63, 024502 (2000)

    Article  Google Scholar 

  9. J. González, F. Guinea, M.A.H. Vozmediano, Europhys. Lett. 34, 711 (1996)

    Article  Google Scholar 

  10. D. Zanchi, H.J. Schulz, Phys. Rev. B 54, 9509 (1996)

    Article  Google Scholar 

  11. D. Weinmann, J.-L. Pichard, Y. Imry, J. Phys. I France 7, 1559 (1997)

    Article  Google Scholar 

  12. G. Katomeris, F. Selva, J.-L. Pichard, Eur. Phys. J. B 31, 401 (2003)

    Article  Google Scholar 

  13. Z.Á. Németh, J.-L. Pichard, Eur. Phys. J. B 33, 8799 (2003)

    Google Scholar 

  14. M. Martí nez, J.-L. Pichard, Eur. Phys. J. B 30, 93 (2002)

    Article  Google Scholar 

  15. F. Selva, D. Weinmann, Eur. Phys. J. B 18, 137 (2000)

    Article  Google Scholar 

  16. J. Ruvalds, C.T. Rieck, S. Tewari J. Thoma, A. Virosztek, Phys. Rev. B 51, 3797 (1995)

    Article  Google Scholar 

  17. G.G. Amatucci, J.M. Tarascon, L.C. Klein, J. Electrochem. Soc. 143, 1114 (1996); K. Takada et al. , Nature 422, 53 (2003)

    Google Scholar 

  18. M. Roger, N. Shannon, unpublished

  19. P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    Article  Google Scholar 

  20. D. Weinmann, J.-L. Pichard, Phys. Rev. Lett. 77, 1556 (1996)

    Article  Google Scholar 

  21. D.L. Shepelyansky, O.P. Sushkov, Europhys. Lett. 37, 121 (1997)

    Article  Google Scholar 

  22. G. Benenti, G. Casati, D.L. Shepelyansky, Eur. Phys. J. D 17, 265 (2001)

    Article  Google Scholar 

  23. B.L. Altshuler, Y. Gefen, A. Kamenev, L. Levitov, Phys. Rev. Lett. 78, 2803 (1997)

    Article  Google Scholar 

  24. P. Jacquod, D.L. Shepelyansky, Phys. Rev. Lett. 79, 1837 (1997)

    Article  Google Scholar 

  25. A. Müller-Groeling, H.A. Weidenmüller, Phys. Rev. B 49, 4752 (1994)

    Article  Google Scholar 

  26. I.V. Krive, P. Sandström, R.I. Shekhter, S.M. Girvin, M. Jonson, Phys. Rev. B 52, 16451 (1995)

    Article  Google Scholar 

  27. G. Burmeister, K. Maschke, Phys. Rev. B 65, 155333 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J.-L. Pichard.

Additional information

Received: 20 January 2004, Published online: 18 June 2004

PACS:

71.10.-w Theories and models of many-electron systems - 71.10.Fd Lattice fermion models (Hubbard model, etc.) - 73.20.Qt Electron solids

Rights and permissions

Reprints and permissions

About this article

Cite this article

Falakshahi, H., Németh, Z.Á. & Pichard, JL. Effect of a lattice upon an interacting system of electrons in two dimensions: Breakdown of scaling and decay of persistent currents. Eur. Phys. J. B 39, 93–105 (2004). https://doi.org/10.1140/epjb/e2004-00175-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00175-0

Keywords

Navigation