Skip to main content
Log in

Abstract.

The theory of elastic contact between two spherical bodies according to Hertz, Mindlin and others is used as a basis for an extension to include the contribution of the viscous effects to the total stress for viscoelastic spheres subjected to twisting moments. Expressions relating twisting moment to the radius of a ‘stick’ region of the contact surface and the radius of the ‘stick’ region to twist angle are derived. Two term power series truncations of the relations are then used to derive approximate expressions for torsional stiffness of the bodies. Validation of the model was by experiments utilising a rheometer device. Applications for the model in post-harvest agriculture include extraction of material surface properties for use in discrete element modelling of mechanical interactions of fruits and other spheroidal produce during machine handling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Hertz, J. Reine Angew. Math. 94, 156 (1882); English translation in Miscellaneous Papers by H. Hertz (Eds. Jones and Schott, London, Macmillan, 1896)

    Google Scholar 

  2. R.D. Mindlin, ASME J. Appl. Mech. 16, 259 (1949)

    MATH  Google Scholar 

  3. S. Timoshenko, J.N. Goodier, Theory of Elasticity, 2nd edn. (McGraw-Hill, New York, 1951)

  4. A.E.H. Love, A Treatise on the Mathematical Theory of Elasticity, 4th edn. (Cambridge University Press, New York, 1952)

  5. K.L. Johnson, Contact Mechanics, 2nd edn. (Cambridge University Press, New York, 1985)

  6. R.D. Mindlin, H. Deresiewicz, ASME J. Appl. Mech. 20, 327 (1953)

    MATH  Google Scholar 

  7. J.L. Lubkin, ASME J. Appl. Mech. 18, 183 (1951)

    MATH  Google Scholar 

  8. M. Hetenyi, J.R. McDonald, ASME J. Appl. Mech. 25, 396 (1958)

    MATH  Google Scholar 

  9. J.P. Bardet, Q. Huang, in Proceedings of the Second International Conference on Micromechanics of Granular Media, 1993, edited by C. Thornton (A.A. Balkema, Rotterdam, The Netherlands, 1993), p. 39

  10. O.R. Walton, R.L. Braun, J. Rheol. 30, 949 (1986)

    Article  Google Scholar 

  11. C. Thornton, ASME J. Appl. Mech. 64, 383 (1997)

    MATH  Google Scholar 

  12. X. Zhang, L. Vu-Quoc, Mech. Mater. 31, 235(1999)

    Article  MATH  Google Scholar 

  13. L. Vu-Quoc, X. Xhang, L. Lesburg, ASME J. Appl. Mech. 67, 363 (2000)

    Article  Google Scholar 

  14. E.H. Lee, J.R.M. Radock, ASME J. Appl. Mech. 27, 438 (1960)

    MATH  Google Scholar 

  15. G. Kuwabara, K. Kono, Jap. J. Appl. Phys. 26, 1230 (1987)

    Google Scholar 

  16. J.M. Hertzsch, F. Spahn, N.V. Brilliantov, J. Phys. II France 5, 1725 (1995)

    Article  Google Scholar 

  17. R. Ramírez, T. Pöschel, N.V. Brilliantov, T. Schwager, Phys. Rev. E 60, 4465 (1999)

    Article  Google Scholar 

  18. K. Iwashita, M. Oda, ASCE J. Engrg. Mech. 124, 285 (1998)

    Article  Google Scholar 

  19. N.V. Brilliantov, T. Pöschel, Europhys. Lett. 42, 511 (1998)

    Article  Google Scholar 

  20. N.V. Brilliantov, T. Pöschel, Eur. Phys. J. B 12, 299 (1999)

    Article  Google Scholar 

  21. T. Pöschel, T. Schwager, N.V. Brilliantov, Eur. Phys. J. B 10, 169 (1999)

    Google Scholar 

  22. C.W. Shih, W.S. Schlein, J.C.M. Li, J. Mat. Res. 7, 1011 (1992)

    Google Scholar 

  23. L. Vu-Quoc, X.G. Zhang, L. Lesburg, Int. J. Solids Struct. 38, 6455 (2001)

    Article  MATH  Google Scholar 

  24. E. Tijskens, H. Ramon, J. De Baerdemaeker, J. Sound Vib. 266, 493 (2003)

    Article  Google Scholar 

  25. M. van Zeebroeck, E. Tijskens, P. van Liedekerke, V. Deli, J. De Baerdemaeker, H. Ramon, J. Sound Vib. 266, 465 (2003)

    Article  Google Scholar 

  26. P. Cundall, O. Strak, Geotech. 29, 47 (1979)

    Google Scholar 

  27. D.D. Hamann, Trans. ASAE 13, 893 (1970)

    Google Scholar 

  28. P. Chen, R.B. Fridley, Trans. ASAE 15, 1103 (1972)

    Google Scholar 

  29. J.G. De Baerdemaeker, L.J. Segerlind, Trans. ASAE 19, 346 (1976)

    Google Scholar 

  30. M. Akyurt, G.L. Zachariah, C.G. Haugh, Trans. ASAE 15, 766 (1972)

    Google Scholar 

  31. R.E. Pitt, H.L. Chen, Trans. ASAE 26, 1275 (1983)

    Google Scholar 

  32. N. Mohsenin, Physical Properties of Plant and Animal Materials, 2nd edn. (Gordon and Breach Science Publishers, New York, 1986)

  33. R. Lu, V.M. Puri, J. Rheol. 35, 1209 (1991)

    Article  Google Scholar 

  34. M. van Zeebroeck, E. Dintwa, E. Tijskens, H. Ramon, Postharvest Biology and Technology (2004), accepted

  35. H. Deresiewicz, ASME J. Appl. Mech. 21, 327 (1954)

    Google Scholar 

  36. M. Abramowitz, A. Irene, Handbook of mathematical functions: with formulas, graphs, and mathematical tables, 8th edn. (Dover New York, New York, 1972)

  37. Y.C. Fung, A First Course in Continuum Mechanics, 3rd edn. (Prentice-Hall Inc., Englewood Cliffs, New Jersey, 1994)

  38. N.V. Brilliantov, F. Spahn, J.M. Hertzsch, Phys. Rev. E 53, 5382 (1996)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Dintwa.

Additional information

Received: 6 January 2004, Published online: 18 June 2004

PACS:

46.35. + z Viscoelasticity, plasticity, viscoplasticity - 46.55. + d Tribology and mechanical contacts - 62.20.Dc Elasticity, elastic constants

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dintwa, E., van Zeebroeck, M., Tijskens, E. et al. Torsional stiffness of viscoelastic spheres in contact. Eur. Phys. J. B 39, 77–85 (2004). https://doi.org/10.1140/epjb/e2004-00173-2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00173-2

Keywords

Navigation