Skip to main content
Log in

Pairing of bosons in the condensed state of the boson-fermion model

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

A two component model of negative U centers coupled with the Fermi sea of itinerant fermions is discussed in connection with high-temperature superconductivity of cuprates, and superfluidity of atomic fermions. We examine the phase transition and the condensed state of this boson-fermion model (BFM) beyond the ordinary mean-field approximation in two and three dimensions. No pairing of fermions and no condensation are found in two-dimensions for any symmetry of the order parameter. The expansion in the strength of the order parameter near the transition yields no linear homogeneous term in the Ginzburg-Landau-Gor’kov equation and a zero upper critical field in any-dimensional BFM, which indicates that previous mean-field discussions of the model are flawed. Normal and anomalous Green’s functions are obtained diagrammatically and analytically in the condensed state of a simplest version of 3D BFM. A pairing of bosons analogous to the Cooper pairing of fermions is found. There are three coupled condensates in the model, described by the off-diagonal single-particle boson, pair-fermion and pair-boson fields. These results negate the common wisdom that the boson-fermion model is adequately described by the BCS theory at weak coupling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G. Zhao, M.B. Hunt, H. Keller, K.A. Müller, Nature 385, 236 (1997)

    Article  Google Scholar 

  2. D. Mihailovic, C.M. Foster, K. Voss, A.J. Heeger, Phys. Rev. B 42, 7989 (1990)

    Article  Google Scholar 

  3. P. Calvani, M. Capizzi, S. Lupi, P. Maselli, A. Paolone, P. Roy, S.W. Cheong, W. Sadowski, E. Walker, Solid State Commun. 91, 113 (1994)

    Article  Google Scholar 

  4. T. Timusk, C.C. Homes, W. Reichardt, Anharmonic properties of High T c Cuprates, edited by D. Mihailovic, G. Ruani, E. Kaldis, K.A. Muller, 171 (World Scientific, Singapore, 1995)

  5. T. Egami, J. Low Temp. Phys. 105, 791 (1996)

    Google Scholar 

  6. A. Lanzara, P.V. Bogdanov, X.J. Zhou, S.A. Kellar, D.L. Feng, E.D. Lu, T. Yoshida, H. Eisaki, A. Fujimori, K. Kishio, J.I. Shimoyana, T. Noda, S. Uchida, Z. Hussain, Z.X. Shen, Nature 412, 510 (2001)

    Article  Google Scholar 

  7. J.C. Phillips, Physics of highT c superconductors (Academic Press, 1989)

  8. A.S. Alexandrov, N.F. Mott, J. Supercond (US) 7, 599 (1994)

    Google Scholar 

  9. P.B. Allen, Nature 412, 494 (2001)

    Article  Google Scholar 

  10. L.P. Gor’kov, J. Superconductivity (US) 12, 9 (1999)

    Article  Google Scholar 

  11. E.W. Carlson, V.J. Emery, S.A. Kivelson, D. Orgad, Concepts in High Temperature Superconductivity, cond-mat/0206217 and references therein

  12. A.S. Alexandrov, N.F. Mott, High Temperature Superconductors and Other Superfluids (Taylor and Francis, London, 1994), and references therein

  13. D. Emin, Phys. Rev. Lett. 62, 1544 (1989)

    Article  Google Scholar 

  14. J.T. Devreese, in Encyclopedia of Applied Physics, Vol. 14 (VCH Publishers, 1996), p. 383, and references therein; J. Tempere, V.M. Fomin, J.T. Devreese, Solid State Commun. 101, 661 (1997)

    Google Scholar 

  15. J. Bonca, S.A. Trugman, Phys. Rev. B 64, 094507 (2001)

    Article  Google Scholar 

  16. A.S. Alexandrov, J. Ranninger, Phys. Rev. B 23, 1796 (1981)

    Article  Google Scholar 

  17. P.W. Anderson, Phys. Rev. Lett. 34, 953 (1975)

    Article  Google Scholar 

  18. A.S. Alexandrov, Phys. Rev. B 53, 2863 (1996)

    Article  Google Scholar 

  19. C.R.A. Catlow, M.S. Islam, X. Zhang, J. Phys.: Condens. Matter 10, L49 (1998)

  20. A.S. Alexandrov, P.E. Kornilovitch, J. Phys.: Condens. Matter 14, 5337 (2002)

    Article  Google Scholar 

  21. A.S. Alexandrov, Zh. Fiz. Khim. 57, 273 (1983) (Russ. J. Phys. Chem. 57, 167 (1983))

    Google Scholar 

  22. R.A. Street, N.F. Mott, Phys. Rev. Lett. 35, 1293 (1975)

    Article  Google Scholar 

  23. E. Simanek, Solid State Commun. 32, 731 (1979)

    Article  Google Scholar 

  24. C.S. Ting, D.N. Talwar, K.L. Ngai, Phys. Rev. Lett. 45, 1213 (1980)

    Article  Google Scholar 

  25. A.S. Aleksandrov, A.B. Khmelinin, Fiz. Tverd. Tela (Leningrad) 28, 3403 (1986) [Sov. Phys. Solid State 28, 1915 (1986)]

    Google Scholar 

  26. A.F. Andreev, Pis’ma Zh. Eksp. Teor. Fiz. 79, 100 (2004)

    Google Scholar 

  27. S.P. Ionov, Izv. AN SSSR Fiz 49, 310 (1985)

    Google Scholar 

  28. G.M. Eliashberg, Pis’ma Zh. Eksp. Teor. Fiz. (Prilozh.) 46, 94 (1987) (JETP Lett. Suppl. 46, S81 (1987))

    Google Scholar 

  29. R. Friedberg, T.D. Lee, Phys. Rev. B 40, 6745 (1989); R. Friedberg, T.D. Lee, H.C. Ren, Phys. Rev. B 42, 4122 (1990)

    Article  Google Scholar 

  30. R. Micnas, J. Ranninger, S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990); J. Ranninger, J.M. Robin, Physica C 235, 279 (1995)

    Article  Google Scholar 

  31. J. Ranninger, J.M. Robin, M. Eschrig, Phys. Rev. Lett. 74, 4027 (1995)

    Article  Google Scholar 

  32. T. Kostyrko, J. Ranninger, Phys. Rev. B 54, 13105 (1996)

    Article  Google Scholar 

  33. V.B. Geshkenbein, L.B. Ioffe, A.I Larkin, Phys. Rev. B 55, 3173 (1997)

    Article  Google Scholar 

  34. A.S. Alexandrov, J. Phys.: Condens. Matter 8, 6923 (1996); A.S. Alexandrov, Physica C 274, 237 (1997); A.S. Alexandrov, Physica C 316, 239 (1999)

    Article  Google Scholar 

  35. I. Grosu, C. Blaga, M. Crisan, J. Supercond. 13, 459 (2000)

    Article  Google Scholar 

  36. T. Domański, Phys. Rev. B 66, 134512 (2002), and references therein

    Article  Google Scholar 

  37. T. Domański, M.M. Maśka, M. Mierzejewski, Phys. Rev. B 67, 134507 (2003)

    Article  Google Scholar 

  38. R. Micnas, S. Robaszkiewicz, A. Bussmann-Holder, in Highlights in condensed matter physics, edited by A. Avella et al. , AIP Conference Proceedings, Melville, New York, Vol. 695, p. 230 (2003) and references therein

  39. A.S. Alexandrov, Theory of superconductivity (IOP Publishing, Bristol-Philadelphia, 2003)

  40. M.L. Chiofalo, S.J.J.M.F. Kokkelmans, J.N. Milstein, M.J. Holland, Phys. Rev. Lett. 88, 090402 (2002)

    Article  Google Scholar 

  41. L.P. Gor’kov, Zh. Eksp. Teor. Fiz. 34, 735 (1958) [Sov. Phys.-JETP 7, 505 (1958)]; L.P. Gor’kov, Zh. Eksp. Teor. Fiz. 36, 1918 (1959) [Sov. Phys.-JETP 9, 1364 (1958)]

    MATH  Google Scholar 

  42. N.N. Bogoliubov, Izv. Acad. Sci. (USSR) 11, 77 (1947)

    Google Scholar 

  43. A.A. Abrikosov, L.P. Gor’kov, I.E. Dzyaloshiskii, Methods of Quantum Field Theory in Statistical Physics (Prentice-Hall, Englewood Cliffs, N.J. (1963))

  44. The crossing diagrams are small as \(g/\mu \ll 1\) [34]

  45. E.A. Pashitskii, S.V. Mashkevich, S.I. Vilchynskyy, Phys. Rev. Lett. 89, 075301 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Alexandrov.

Additional information

Received: 26 February 2004, Published online: 18 June 2004

PACS:

74.20.-z Theories and models of superconducting state - 74.20.Mn Nonconventional mechanisms (spin fluctuations, polarons and bipolarons, resonating valence bond model, anyon mechanism, marginal Fermi liquid, Luttinger liquid, etc.) - 74.20.Rp Pairing symmetries (other than s-wave) - 74.25.Dw Superconductivity phase diagrams

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexandrov, A.S. Pairing of bosons in the condensed state of the boson-fermion model. Eur. Phys. J. B 39, 55–60 (2004). https://doi.org/10.1140/epjb/e2004-00170-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00170-5

Keywords

Navigation