Skip to main content
Log in

Constant pressure reactive molecular dynamics simulations of phase transitions under pressure: The graphite to diamond conversion revisited

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

We have introduced a new technique for constant-pressure molecular dynamics by combining the idea behind the Parrinello-Rahman scheme and the method by Iannuzzi, Laio and Parrinello [Phys. Rev. Lett. 90, 238302 (2003)], recently devised to deal with rare events. The new scheme is suitably devised to describe solid-solid phase transitions for which the primary order parameter is not the cell shape, but some internal structural coordinate. The method has been demonstrated by simulating the conversion of graphite into diamond at high pressure within a tight-binding model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. High Pressure Phenomena, edited by R.J. Hemley, G.L. Chiarotti, M. Bernasconi, L. Ulivi, (Editrice Compositori, Bologna, 2002); Proceeding of the CXLVII course of the school Enrico Fermi, Varenna 2001

  2. M. Parrinello, A. Rahman, Phys. Rev. Lett. 45, 1196 (1980)

    Article  Google Scholar 

  3. P. Focher, G.L. Chiarotti, M. Bernasconi, E. Tosatti, M. Parrinello, Europhys. Lett. 26, 345 (1994)

    Google Scholar 

  4. R. Martoňák, A. Laio, M. Parrinello, Phys. Rev. Lett. 90, 75503 (2003)

    Article  Google Scholar 

  5. A. Laio, M. Parrinello, Proc. Nat. Acad. Sci. 99, 12562 (2002)

    Article  Google Scholar 

  6. Y. Iwasa et al. , Science 264, 1570 (1994)

    Google Scholar 

  7. L. Marques et al. , Science 283, 1720 (1999)

    Article  Google Scholar 

  8. M. Bernasconi, G.L. Chiarotti, P. Focher, M. Parrinello, E. Tosatti Phys. Rev. Lett. 78, 2008 (1997)

    Article  Google Scholar 

  9. V. Schettino, R. Bini, Phys. Chem. Chem. Phys. 5, 1951 (2003)

    Article  Google Scholar 

  10. T. Ozaki, Y. Iwasa, T. Mitani, Chem. Phys. Lett. 285, 289 (1998)

    Article  Google Scholar 

  11. M. Iannuzzi, A. Laio, M. Parrinello, Phys. Rev. Lett. 90, 238302 (2003)

    Article  Google Scholar 

  12. S. Scandolo, M. Bernasconi, G.L. Chiarotti, P. Focher, E. Tosatti, Phys. Rev. Lett. 74, 4015 (1995)

    Article  Google Scholar 

  13. F.P. Bundy, J.S. Kasper, J. Chem. Phys. 46, 3437 (1967)

    Google Scholar 

  14. C. Xu, C. Wang, C. Chan, K.-H. Ho, J. Phys.: Condens. Matter 4, 6047 (1992)

    Article  Google Scholar 

  15. F.D. Murnaghan, Proc. Nat. Acad. Sci. 30, 244 (1944)

    MATH  Google Scholar 

  16. CRC Handbook of Chemistry and Physics, 78th edn. (CRC Press, Boca Raton 1997), pp. 12-19

  17. O.L. Blakslee, et al. , J. Appl. Phys. 41, 3373 (1970)

    Article  Google Scholar 

  18. H.J. McSkimin, W.L. Bond, Phys. Rev. 105, 116 (1957)

    Article  Google Scholar 

  19. The equilibrium total energy of graphite is 0.126 eV/atom lower than that of diamond while the corresponding experimental value is 0.02 eV/atom ([16]). This misfit can be also partially due to insufficient accuracy in the Brillouin Zone integration

  20. M. Parrinello, in Molecular Dynamics Simulation of Statitical Mechanical Systems, Proceeding of the course XCVII of the International School of Physics “Enrico Fermi” (North-Holland Physics Publishing, Amsterdam, 1986)

  21. A. Cavalleri, K. Sokolowski-Tinten, D. von der Linde, I. Spagnolatti, M. Bernasconi, G. Benedek, A. Podestá, P. Milani, Europhys. Lett. 57, 281 (2002)

    Article  Google Scholar 

  22. L.A. Girifalco, J. Chem. Phys. 95, 5370 (1992); L.A. Girifalco, J. Chem. Phys. 96, 858 (1992)

    Google Scholar 

  23. We here recall once again that the PR scheme fails for our particular model of graphite described by the TB+vdW interactions, while in the ab-initio PR simulation of reference [12] the transition to diamond does occur although at a pressure four times larger than the equilibrium pressure

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bernasconi.

Additional information

Received: 11 February 2004, Published online: 18 June 2004

PACS:

61.50.Ks Crystallographic aspects of phase transformations; pressure effects

R. Martoňák: Permanent address: Department of Physics, Faculty of Electrical Engineering and Information Technology, Slovak University of Technology, Ilkovičova 3, 812 19 Bratislava, Slovakia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zipoli, F., Bernasconi, M. & Martoňák, R. Constant pressure reactive molecular dynamics simulations of phase transitions under pressure: The graphite to diamond conversion revisited. Eur. Phys. J. B 39, 41–47 (2004). https://doi.org/10.1140/epjb/e2004-00168-y

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00168-y

Keywords

Navigation