Skip to main content
Log in

A path-sampling scheme for computing thermodynamic properties of a many-body system in a generalized ensemble

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

We propose to compute the thermodynamic properties of many-body systems using a path-sampling Monte Carlo scheme implemented in a generalized path ensemble. Trial paths are generated through an expanded ensemble using a reversible discretization of Langevin’s equation of motion. We also show how the systematic errors resulting from the use of a finite time step can rigorously be taken into account in the path-sampling scheme. We find that the degree of convergence of the estimated thermodynamic quantity towards the exact value correlates with the mean acceptance rates of the path-sampling scheme. An application of the path method for simulating glassy systems is finally suggested.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Frenkel, B. Smit, Understanding molecular simulation (Academic Press, San Diego, 2001)

  2. S.V. Shevkunov, A. Martsinovski, P. Vorontsov-Velyaminov, Teplofisika vysokikh temperatur (Pervaja statja o osobennykh ansamblej, 1988), Vol. 26, p. 246

  3. Y. Iba, Int. J. Mod. Phys. C 12, 623 (2001)

    Article  Google Scholar 

  4. A.P. Lyubartsev, A.A. Martsinovski, S.V. Shevkunov, P.N. Vorontsov-Velyaminov, J. Chem. Phys. 96, 1776 (1992)

    Article  Google Scholar 

  5. E. Marinari, G. Parisi, Europhys. Lett. 19, 451 (1992)

    Google Scholar 

  6. A.P. Lyubartsev, A. Laaksonen, P.N. Vorontsov-Velyaminov, Mol. Phys. 82, 455 (1994)

    Google Scholar 

  7. A. Brukhno, T.V. Kuznetsova, A.P. Lyubartsev, P.N. Vorontsov-Velyaminov, Vysokomolekuljarnye Soedinenija 38, 3336 (1996)

    Google Scholar 

  8. F. Wang, D. Landau, Phys. Rev. Lett. 86, 2050 (2001)

    Article  Google Scholar 

  9. F. Wang, D. Landau, Phys. Rev. E 64, 056101 (2001)

    Article  Google Scholar 

  10. L.R. Pratt, J. Chem. Phys. 85, 5045 (1986)

    Article  Google Scholar 

  11. C. Dellago, P. Bolhuis, F. Csajka, D. Chandler, J. Chem. Phys. 108, 1964 (1998)

    Article  Google Scholar 

  12. C. Dellago, P. Bolhuis, F. Csajka, D. Chandler, J. Chem. Phys. 108, 9236 (1998)

    Article  Google Scholar 

  13. T. Vlugt, C. Dellago, B. Smit, J. Chem. Phys. 113, 8791 (2000)

    Article  Google Scholar 

  14. T. Vlugt, B. Smit, Phys. Chem. Comm. 2, 1 (2001)

    MATH  Google Scholar 

  15. A.N. Kolmogorov, Math. Ann. 113, 766 (1936)

    MATH  Google Scholar 

  16. R.L. Stratonovich, Nonlinear Nonequilibrium Thermodynamics I (Springer-Verlag, Berlin, 1992)

  17. J. Ferkinghoff-Borg, Eur. Phys. J. B 29, 481 (2002)

    Article  Google Scholar 

  18. M. Athénes, Phys. Rev. E 66, 016701 (2002)

    Article  Google Scholar 

  19. M. Athénes, Phys. Rev. E 66, 046705 (2002)

    Article  Google Scholar 

  20. P. Langevin, Comptes Rendus 146, 530 (1908)

    MATH  Google Scholar 

  21. D. Euvrard, Résolution numérique des équations aux dérivés partielles (Masson, Paris, 1994)

  22. R. Dewar, J. Phys. A 36, 631 (1999)

    MATH  Google Scholar 

  23. D.J. Evans, G.D. Cohen, G.P. Moriss, Phys. Rev. Lett. 71, 2401 (1993)

    Article  MATH  Google Scholar 

  24. J. Kurchan, J. Phys. A 31, 3719 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. G.E. Crooks, Phys. Rev. E 97, 2361 (2000)

    Article  Google Scholar 

  26. R. Zwanzig, J. Chem. Phys. 22, 1420 (1954)

    Google Scholar 

  27. C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997)

    Article  Google Scholar 

  28. C. Jarzynski, Phys. Rev. E 56, 5018 (1997)

    Article  Google Scholar 

  29. G.E. Crooks, J. Stat. Phys. 90, 1481 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  30. D.A. Hendrix, C. Jarzynski, J. Chem. Phys. 114, 5974 (2001)

    Article  Google Scholar 

  31. P.J. Rossky, J.D. Doll, H.L. Friedman, J. Chem. Phys. 69, 4628 (1978)

    Article  Google Scholar 

  32. C. Pangali, M. Rao, B.J. Berne, Chem. Phys. Lett. 55, 413 (1978)

    Article  Google Scholar 

  33. B. Mehlig, D.W. Heermann, B.M. Forrest, Mol. Phys. 76, 1347 (1992)

    MathSciNet  Google Scholar 

  34. S. Duane, A.D. Kennedy, B.J. Pendleton, D. Roweth, Phys. Lett. B 195, 216 (1987)

    Article  Google Scholar 

  35. B. Mehlig, D.W. Heermann, B.M. Forrest, Phys. Rev. B 45, 645 (1992)

    Article  Google Scholar 

  36. A.P. Omelyan, I.P. Mryglod, R. Folk, Comp. Phys. Commun. 151, 272 (2003)

    Article  MathSciNet  Google Scholar 

  37. J.A. Siepmann, D. Frenkel, Mol. Phys. 75, 59 (1992)

    Google Scholar 

  38. D. Frenkel, G.C. Mooij, B. Smit, J. Phys.: Condens. Matter 4, 3053 (1992)

    Article  Google Scholar 

  39. D. Frenkel, G.C. Mooij, B. Smit, Mol. Phys. 75, 983 (1992)

    Google Scholar 

  40. T. Garel, H. Orland, J. Phys. A 23, L621 (1990)

  41. S. Consta, N.B. Wilding, D. Frenkel, Z. Alexandrowicz, J. Chem. Phys. 110, 3220 (1999)

    Article  Google Scholar 

  42. S. Consta, T.J. Vlugt, H.J.W. Hoeth, D. Smit, B. Frenkel, Mol. Phys. 97, 1243 (1999)

    Article  Google Scholar 

  43. C. Robert, Méthodes de Monte Carlo par Chaînes de Markov (Economica, Paris, 1996)

  44. B.A. Berg, T. Neuhaus, Phys. Lett. B 267, 249 (1991)

    Article  Google Scholar 

  45. B.A. Berg, T. Neuhaus, Phys. Rev. Lett. 68, 9 (1992)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Athénes.

Additional information

Received: 28 January 2004, Published online: 8 June 2004

PACS:

82.60.Lf Thermodynamics of solutions - 07.05.Tp Computer modeling and simulation - 64.70.Pf Glass transitions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Athénes, M. A path-sampling scheme for computing thermodynamic properties of a many-body system in a generalized ensemble. Eur. Phys. J. B 38, 651–663 (2004). https://doi.org/10.1140/epjb/e2004-00159-0

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00159-0

Keywords

Navigation