Skip to main content

Internet’s critical path horizon

Abstract.

Internet is known to display a highly heterogeneous structure and complex fluctuations in its traffic dynamics. Congestion seems to be an inevitable result of user’s behavior coupled to the network dynamics and it effects should be minimized by choosing appropriate routing strategies. But what are the requirements of routing depth in order to optimize the traffic flow? In this paper we analyse the behavior of Internet traffic with a topologically realistic spatial structure as described in a previous study [S.-H. Yook et al. , Proc. Natl Acad. Sci. USA 99, 13382 (2002)]. The model involves self-regulation of packet generation and different levels of routing depth. It is shown that it reproduces the relevant key, statistical features of Internet’s traffic. Moreover, we also report the existence of a critical path horizon defining a transition from low-efficient traffic to highly efficient flow. This transition is actually a direct consequence of the web’s small world architecture exploited by the routing algorithm. Once routing tables reach the network diameter, the traffic experiences a sudden transition from a low-efficient to a highly-efficient behavior. It is conjectured that routing policies might have spontaneously reached such a compromise in a distributed manner. Internet would thus be operating close to such critical path horizon.

This is a preview of subscription content, access via your institution.

References

  1. S.-H. Yook, H. Jeong, A-L. Barabási, Proc. Natl. Acad. Sci. USA 99, 13382, (2002)

    ADS  Article  Google Scholar 

  2. B.A. Huberman, R.M. Lukose, Science 277, (1997)

  3. N. Wiener, Cybernetics (John Wiley and Sons, New York, 1949)

  4. J.H. Cowie, D.M. Nicol, A.T. Ogielski, Comput. Sci. Engin. 1, 42 (1999)

    Article  Google Scholar 

  5. W. Willinger, R. Govindan, S. Jamin, V. Paxson, S. Shenker, PNAS 99 (Suppl. 1), 2573 (2002)

    Article  Google Scholar 

  6. R.V. Solé, S. Valverde, Physica A 289, 595 (2001)

    ADS  Article  Google Scholar 

  7. S. Valverde, R.V. Solé, Physica A 312, 636 (2002)

    ADS  Article  Google Scholar 

  8. N. Hohn, D. Veitch, P. Abry, ACM/SIGCOMM Internet Measurement Workshop (Marseille, France, 2002) pp. 63-68

  9. K. Fukuda, A Study of Phase Transition Phenomena in Internet Traffic, Ph.D. thesis, Keio Univ. (1999)

  10. M. Argollo de Menezes, A.-L. Barabási, cond-mat/0306304 (2003)

  11. W. Willinger, M.S. Taqqu, R. Sherman, D.V. Wilson, IEEE ACM Trans. on Networking 5, 71 (1997)

    Article  Google Scholar 

  12. H. Fukś, A.T. Lawniczak, adap-org/9909006 (2001)

  13. M. Faloutsos, P. Faloutsos, C. Faloutsos, ACM SIGCOMM 29, 251 (1999)

    Article  Google Scholar 

  14. K. Bolding, M.L. Fulgham, L. Snyder, Tech. Rep. CSE-94-02-04 (1994)

  15. P.M.B. Vitányi, SIAM J. Comput. 17 4, 659 (1988)

    Article  Google Scholar 

  16. G. Bilardi, F.P. Preparata, CS-93-20, Dept. Comp. Sci., Brown Univ. (1993)

  17. B. Waxman, IEEE J. Selec. Areas Commun., SAC-6(9), 1617 (1988)

  18. A. Vázquez, R. Pastor-Satorras, A. Vespignani, cond-mat/0206084 (2002)

  19. When the link decision is ambiguous (more than one link can be selected) the less visited link until the moment is chosen (this could be implemented by maintaining a counter of the number of packets forwarded through the link)

  20. J. Dong Noh, H Rieger, cond-mat/0307719 (2003)

  21. K.-I. Goh, B. Kahng, D. Kim, Traffic and Granular Flow ‘01 (Springer, Berlin, 2003)

  22. M.E.J. Newman, cond-mat/0309045 (2003)

  23. L.C. Freeman, Sociometry 40, 35 (1979)

    ADS  Article  Google Scholar 

  24. D.H. Lorenz, A. Orda, D. Raz, Y. Shavitt, TR-2001-17, DIMACS (2001)

  25. L.J. Cowen, Proc. of the 10th Annual ACM-SIAM Symp. on Discrete Algorithms (1999)

  26. M. Thorup, U. Zwick, Proc. 33th Annual ACM Symposium on Theory of Computing (SPAA), 1-10 (2001)

    Google Scholar 

  27. D. Krioukov, K. Fall, X. Yang, cond-mat/0308288 (2003)

  28. R. Percacci, A. Vespignani, cond-mat/0209619 (2002)

  29. Internet End-to-end Performance Monitoring, http://www-iepm.slac.stanford.edu.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. V. Solé.

Additional information

Received: 22 December 2003, Published online: 14 May 2004

PACS:

89.75.-k Complex systems - 05.70.Ln Nonequilibrium and irreversible thermodynamics - 87.23.Ge Dynamics of social systems

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Valverde, S., Solé, R.V. Internet’s critical path horizon. Eur. Phys. J. B 38, 245–252 (2004). https://doi.org/10.1140/epjb/e2004-00117-x

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00117-x

Keywords

  • Direct Consequence
  • Spatial Structure
  • Statistical Feature
  • Traffic Flow
  • Network Dynamic