Skip to main content
Log in

Abstract

The lattice dynamics of crystalline L-alanine shows unusual features tentatively assigned to a localization of vibrational energy. However, other properties alternatively suggest the existence of a second order phase transition undetected in previous crystallographic work. In this paper, we present the results of a high resolution X-ray diffraction study down to 10 K, together with new structure determinations at intermediate temperatures. The data rule out the hypothesis of a conventional structural phase transition. No change in the space group symmetry is observed and an anomalous decrease of the lattice parameter c in discrete steps is discovered when heating the crystal from 10 K to room temperature. It could be ascribed to a progressive conformational change of the NH3 + group of the zwitterionic molecule. An analysis of the physical properties of crystalline L-alanine suggests the existence of a strong dynamic Jahn-Teller-like effect owing to the NH3 + charge-lattice coupling. This would explain both the splitting of some vibrational states and properties related to a microscopic lattice instability like the onset of depolarization in the transmitted light below ~250 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H.J. Simpson Jr., R.E. Marsh, Acta Cryst. 20, 550 (1966)

    Article  Google Scholar 

  2. R. Destro, R.E. Marsh, R. Bianchi, J. Phys. Chem. 92, 966, (1988)

    Article  Google Scholar 

  3. M.S. Lehman, T.F. Koetzle, W.C. Hamilton, J. Am. Chem. Soc. 94, 2657 (1972)

    Article  Google Scholar 

  4. A. Migliori, P.M. Maxton, A.M. Clogston, E. Zirngiebl, M. Lowe, Phys. Rev. B 38, 13464 (1988)

    Article  ADS  Google Scholar 

  5. E. Loh, J. Chem. Phys. 63, 3192 (1975)

    Article  ADS  Google Scholar 

  6. J. Bandekar, L. Genzel, F. Kremer, L. Santo, Spectrochim. Acta A 39, 357 (1983)

    Article  ADS  Google Scholar 

  7. C.H. Wang, R.D. Storms, J. Chem. Phys. 55, 3291 (1971); K. Machida, A. Kagayama, Y. Saito, T. Uno, Spectrochim. Acta A 34, 909 (1978)

    Article  ADS  Google Scholar 

  8. T. Kosic, R.J. Cline, D.D. Dlott, J. Chem. Phys. 241, 1138 (1984)

    Google Scholar 

  9. A. Micu, D. Durand, M. Quilichini, M.J. Field, J.C. Smith, J. Phys. Chem. 99, 5645 (1995)

    Article  Google Scholar 

  10. H.N. Bordallo, M. Barthes, J. Eckert, Physica B 241, 1138 (1998)

    Article  ADS  Google Scholar 

  11. R.S. Kwok, P. Maxton, A. Migliori, Solid State Commun. 74, 1193 (1990)

    Article  ADS  Google Scholar 

  12. V.V. Lemanov, S.N. Popov, Phys. Sol. State 40, 1921 (1998)

    Article  ADS  Google Scholar 

  13. K. Beshah, E. Olejniczak, R. Griffin, J. Chem. Phys. 86, 4730, (1987); P. Jackson, R.K. Harris, J. Chem. Soc. Faraday Trans. 91, 805, (1995)

    Article  ADS  Google Scholar 

  14. A.C. Scott, Nonlinear Science (Oxford University Press, Oxford, 1999)

  15. M. Barthes, A.F. Vik, A. Spire, H.N. Bordallo, J. Eckert, J. Phys. Chem. A 106, 5230, (2002)

    Article  Google Scholar 

  16. A. Scott, I. Bigio, C. Johnston, Phys. Rev. B 39, 12883, (1989)

    Article  ADS  Google Scholar 

  17. A.F. Vik, Y.I. Yuzyuk, M. Barthes, J.L. Sauvajol, Comm. at “Journées Françaises de Diffusion Raman” (6/8 Dec. 2001, Montpellier), proceeding available on request to M. Barthes

  18. A. Salam, Phys. Lett. B 288, 153 (1992); H. Zepik et al., Science 295, 1266 (2002)

    Article  ADS  Google Scholar 

  19. P. Saint-Grégoire, R. Almairac, A. Freund, J.Y. Gesland, Ferroelectrics 67, 15 (1986)

    Article  Google Scholar 

  20. R. Almairac, private communication

  21. S. Mackay, C.J. Gilmore, C. Edwards, N. Stewart, K. Shankland, (1999) maXus Computer Program for the Solution and Refinement of Crystal Structures, Bruker Nonius, The Netherlands, MacScience, Japan and The University of Glasgow

  22. A.F. Vik, Y.I. Yuzyuk, M. Barthes, J.L. Sauvajol, unpublished

  23. W. Wang, W. Min, C. Zhu, F. Yi, Phys. Chem. Chem. Phys. 5, 4000 (2003)

    Article  Google Scholar 

  24. G. Kalosakas, G. Tsironis, S. Aubry, Phys. Rev. B 58, 3094 (1998)

    Article  ADS  Google Scholar 

  25. C. Kittel, Introduction to Solid State Physics, 3rd edn. (John Wiley, N.Y., 1968), p. 630.

  26. F.S. Ham, Phys. Rev. 138, A 1727( 1965).

  27. D.N. Argyriou, H.N. Bordallo, J.F. Mitchell, J.D. Jorgensen, G.F. Strouse, Phys. Rev. B 60, 6200 (1999)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Barthes.

Additional information

Received: 19 December 2003, Published online: 2 April 2004

PACS:

61.10.Nz X-ray diffraction - 05.45.Yv Solitons - 64.70.Kb Solid-solid transitions

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barthes, M., Bordallo, H.N., Dénoyer, F. et al. Micro-transitions or breathers in L-alanine?. Eur. Phys. J. B 37, 375–382 (2004). https://doi.org/10.1140/epjb/e2004-00069-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00069-1

Keywords

Navigation