Modulated replica symmetry breaking schemes for antiferrimagnetic spin glasses

  • R. OppermannEmail author
  • D. Sherrington
  • M. Kiselev


We define modulated replica symmetry breaking (RSB) schemes which combine tree- and wave-like structures. A modulated scheme and unmodulated RSB are evaluated at 1-step level for a semiconductor model with antiferromagnetic Korenblit-Shender interaction. By comparison of the free energies we find evidence that a T = 0 phase transition in the ferrimagnetic phase leads to a transition between the different RSB-schemes. An embedding factor of Parisi block matrices with sublattice-asymmetrical size is employed as a new variational parameter in the modulated scheme.


Spin Glass Discontinuous Transition Spin Glass Model Spin Glass Phasis Replica Symmetry Break 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    G. Parisi, Phys. Rev. Lett. 50, 1946 (1983)MathSciNetADSCrossRefGoogle Scholar
  2. 2.
    G. Parisi, J. Phys. A 13, 1101 (1980)ADSCrossRefGoogle Scholar
  3. 3.
    M. Palassini, A.P. Young, Phys. Rev. Lett. 85, 3333 (2000)ADSCrossRefGoogle Scholar
  4. 4.
    E. Marinari, G. Parisi, Phys. Rev. Lett. 85, 3332 (2000)ADSCrossRefGoogle Scholar
  5. 5.
    I.Ya. Korenblit, E.F. Shender, Sov. Phys. JETP 62, 1030 (1985)Google Scholar
  6. 6.
    Ya.V. Fyodorov, I.Ya. Korenblit, E.F. Shender, Europhys. Lett. 4, 827 (1987)ADSCrossRefGoogle Scholar
  7. 7.
    I.Ya. Korenblit, Yu.V. Fedorov, E.F. Shender, J. Phys. C 20, 1835 (1987)ADSCrossRefGoogle Scholar
  8. 8.
    I.Ya. Korenblit, Yu.A. Fedorov, E.F. Shender, Sov. Phys. JETP 65, 400 (1987)MathSciNetGoogle Scholar
  9. 9.
    D. Sherrington, S. Kirkpatrick, Phys. Rev. Lett. 35, 1972 (1975)CrossRefGoogle Scholar
  10. 10.
    Ya.V. Fyodorov, I.Ya. Korenblit, E.F. Shender, J. Phys.: Condens Matter 2, L1669 (1990)Google Scholar
  11. 11.
    J.P. Bouchaud, M. Mézard, J. Phys. France 4, 1109 (1994)CrossRefGoogle Scholar
  12. 12.
    E. Marinari, G. Parisi, F. Ritort, J. Phys. A 27, 7647 (1994)MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. 13.
    P. Chandra, L.B. Ioffe, D. Sherrington, Phys. Rev. Lett. 75, 713 (1995)ADSCrossRefGoogle Scholar
  14. 14.
    A. Chudnovskiy, R. Oppermann, B. Rosenow, D. Yakovlev, W. Zehnder, W. Ossau, Phys. Rev. B 55, 10519 (1997)ADSCrossRefGoogle Scholar
  15. 15.
    M. Mézard, G. Parisi, M.A. Virasoro, Spin Glass Theory and Beyond (World Scientific, Singapore, 1987)Google Scholar
  16. 16.
    J. Villain, Z. Phys. B 33, 31 (1979)ADSCrossRefGoogle Scholar
  17. 17.
    F. Bernardot, C. Rigaux, Phys. Rev. B 56, 2328 (1997)ADSCrossRefGoogle Scholar
  18. 18.
    C. Wengel, C.L. Henley, A. Zippelius, Phys. Rev. B 53, 6543 (1995)ADSCrossRefGoogle Scholar
  19. 19.
    R. Oppermann, D. Sherrington, Phys. Rev. B 67, 245111 (2003)ADSCrossRefGoogle Scholar

Copyright information

© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2003

Authors and Affiliations

  1. 1.Institute for Theoretical PhysicsUniversity of WürzburgWürzburgGermany
  2. 2.Department of PhysicsUniversity of OxfordOxfordUK

Personalised recommendations