Skip to main content

The 2-site Hubbard and \(\mathsf{t}\)-\(\mathsf{J}\) models

Abstract.

The fermionic and bosonic sectors of the 2-site Hubbard model have been exactly solved by means of the equation of motion and Green’s function formalism. The exact solution of the t-J model has been also reported to investigate the low-energy dynamics. We have successfully searched for the exact eigenoperators, and the corresponding eigenenergies, having in mind the possibility to use them as an operatorial basis on the lattice. Many local, single-particle, thermodynamical and response properties have been studied as functions of the external parameters and compared between the two models and with some numerical and exact results. It has been shown that the 2-site Hubbard model already contains the most relevant energy scales of the Hubbard model: the local Coulomb interaction U and the spin-exchange one \(J = \frac{4t^2}U\). As a consequence of this, for some relevant properties (kinetic energy, double occupancy, energy, specific heat and entropy) and as regards the metal-insulator transition issue, it has resulted possible to almost exactly mime the behavior of larger systems, sometimes using a higher temperature to get a comparable level spacing. The 2-site models have been also used as toy models to test the efficiency of the Green’s function formalism for composite operators. The capability to reproduce the exact solutions, obtained by the exact diagonalization technique, gives a firm ground to the approximate treatments based on this formalism.

This is a preview of subscription content, access via your institution.

References

  1. A. Harris, R. Lange, Phys. Rev. 157, 295 (1967)

    Article  Google Scholar 

  2. H. Shiba, P.A. Pincus, Phys. Rev. B 5, 1966 (1972)

    Article  Google Scholar 

  3. K. Heinig, J. Monecke, Phys. Sta. Sol. (b) 49, K139 (1972)

  4. K. Heinig, J. Monecke, Phys. Sta. Sol. (b) 49, K141 (1972)

  5. D. Cabib, T. Kaplan, Phys. Rev. B 7, 2199 (1973)

    Article  Google Scholar 

  6. R. Schumann, Ann. Phys. (Leipzig) 11, 49 (2002)

    Article  Google Scholar 

  7. H. Umezawa, Advanced Field Theory: Micro, Macro and Thermal Physics (A.I.P., New York, 1993), and references therein

  8. F. Mancini, Phys. Lett. A 249, 231 (1998)

    Article  Google Scholar 

  9. S. Ishihara, H. Matsumoto, S. Odashima, M. Tachiki, F. Mancini, Phys. Rev. B 49, 1350 (1994); F. Mancini, S. Marra, H. Matsumoto, Physica C 250, 184 (1995); 252, 361 (1995); A. Avella, F. Mancini, D. Villani, L. Siurakshina, V.Y. Yushankhai, Int. J. Mod. Phys. B 12, 81 (1998)

    Article  Google Scholar 

  10. F. Mancini, S. Marra, H. Matsumoto, Physica C 244, 49 (1995); F. Mancini, A. Avella, Condens. Matter Phys. 1, 11 (1998)

    Article  Google Scholar 

  11. F. Mancini, A. Avella, Eur. Phys. J. B 36, 37 (2003)

    Article  Google Scholar 

  12. V. Fiorentino, F. Mancini, E. Zasinas, A. Barabanov, Phys. Rev. B 64, 214515 (2001)

    Article  Google Scholar 

  13. A. Avella, F. Mancini, S. Odashima, Physica C 388, 76 (2003a)

    Google Scholar 

  14. A. Avella, F. Mancini, S. Odashima, Effects of two-site composite excitations in the Hubbard model, preprint of the University of Salerno, to be published in J. Magn. Magn. Mater.

  15. D. Villani, E. Lange, A. Avella, G. Kotliar, Phys. Rev. Lett. 85, 804 (2000)

    Article  Google Scholar 

  16. H. Mori, Progr. Theor. Phys. 33, 423 (1965); Progr. Theor. Phys. 34, 399 (1965)

    MATH  Google Scholar 

  17. D.J. Rowe, Rev. Mod. Phys. 40, 153 (1968)

    Google Scholar 

  18. L.M. Roth, Phys. Rev. 184, 451 (1969)

    Article  Google Scholar 

  19. Y.A. Tserkovnikov, Teor. Mat. Fiz. 49, 219 (1981)

    MathSciNet  Google Scholar 

  20. P. Fulde, Electron Correlations in Molecules and Solids (Springer-Verlag, 1995), 3rd edn.

  21. J. Hubbard, Proc. Roy. Soc. A 276, 238 (1963); Proc. Roy. Soc. A 277, 237 (1964); Proc. Roy. Soc. A 281, 401 (1964); 285, 542 (1965)

    Google Scholar 

  22. K.A. Chao, J. Spalek, A.M. Oles, J. Phys. C 10, L271 (1977)

  23. P. Anderson, Science 235, 1196 (1987)

    Google Scholar 

  24. F. Zhang, T. Rice, Phys. Rev. B 37, 3759 (1988)

    Article  Google Scholar 

  25. The zero-frequency constants naturally appear in the determination of the two-particle and, more generally, bosonic Green’s functions. An exhaustive discussion about their origin and the way to determine them is given in reference [11]

  26. E. Dagotto, A. Moreo, F. Ortolani, D. Poilblanc, J. Riera, Phys. Rev. B 45, 10741 (1992)

    Article  Google Scholar 

  27. C. Castellani, C.D. Castro, D. Feinberg, J. Ranninger, Phys. Rev. Lett. 43, 1957 (1979)

    Article  Google Scholar 

  28. P. Prelovšek, private communication

  29. E. Dagotto, A. Moreo, F. Ortolani, J. Riera, D.J. Scalapino, Phys. Rev. Lett. 67, 1918 (1991)

    Article  Google Scholar 

  30. N. Furukawa, M. Imada, J. Phys. Soc. Jpn 61, 3331 (1992)

    Google Scholar 

  31. N. Furukawa, M. Imada, Physica B 186-188, 931 (1993)

  32. A. Moreo, D.J. Scalapino, R.L. Sugar, S.R. White, N.E. Bickers, Phys. Rev. B 41, 2313 (1990)

    Article  Google Scholar 

  33. D. Duffy, A. Moreo, Phys. Rev. B 55, 2095 (1997)

    Article  Google Scholar 

  34. J. Bonča, P. Prelovšek, Phys. Rev. B 67, 085103 (2003)

    Article  Google Scholar 

  35. J. Jaklic, P. Prelovšek, Adv. Phys. 49, 1 (2000)

    Article  Google Scholar 

  36. A. Georges, W. Krauth, Phys. Rev. B 48, 7167 (1993)

    Article  Google Scholar 

  37. J. Schulte, M.C. Böhm, Phys. Rev. B 53, 15385 (1996)

    Article  Google Scholar 

  38. D. Vollhardt, Phys. Rev. Lett. 78, 1307 (1997)

    Article  Google Scholar 

  39. N. Chandra, M. Kollar, D. Vollhardt, Phys. Rev. B 59, 10541 (1999)

    Article  Google Scholar 

  40. F. Mancini, H. Matsumoto, D. Villani, J. Phys. Studies 4, 474 (1999)

    Google Scholar 

  41. S. Feng, F. Mancini, Int. J. Mod. Phys. B 15, 1915 (2001)

    Article  Google Scholar 

  42. F. Mancini, D. Villani, Phys. Lett. A 261, 357 (1999)

    Article  Google Scholar 

  43. N. Bogolubov, S. Tyablikov, Dokl. Akad. Nauk SSSR 126, 53 (1959)

    Google Scholar 

  44. D. N. Zubarev, Sov. Phys. Uspekhi 3, 320 (1960)

    Google Scholar 

  45. D. Zubarev, Non Equilibrium Statistical Thermodynamics (Consultants Bureau, New York, 1974)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Avella.

Additional information

Received: 16 July 2003, Published online: 30 January 2004

PACS:

71.10.-w Theories and models of many-electron systems - 71.10.Fd Lattice fermion models (Hubbard model, etc.)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Avella, A., Mancini, F. & Saikawa, T. The 2-site Hubbard and \(\mathsf{t}\)-\(\mathsf{J}\) models. Eur. Phys. J. B 36, 445–473 (2003). https://doi.org/10.1140/epjb/e2004-00002-8

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2004-00002-8

Keywords

  • Hubbard Model
  • Composite Operator
  • Level Spacing
  • Firm Ground
  • Exact Diagonalization