Skip to main content
Log in

Size effect of quantum conductance in single-walled carbon nanotube quantum dots

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

The quantum conductance of two kinds of carbon nanotube quantum dots (CNQD) composed of (5,5) and (10,0) tubes, namely (10,0)/(5,5)/(10,0) and (5,5)/(10,0)/(5,5) with different quantum sizes, are calculated. It is shown that for (10,0)/(5,5)/(10,0) CNQD, one on-resonant peak at the Fermi energy exists only for special QD sizes, and the width of the conductance gap increases from 1.0 eV to 3.2 eV with the increase of size. The positions of peaks around the Fermi energy are obtained by the electronic structure of individual finite (5,5) tubes. We also find that the (5,5)/(10,0)/(5,5) CNQDs behave as a quantum dot, and its localized QD states are different from that of the former CNQD because of the existence of the interface states between (5,5)/(10,0) junctions. For (5,5)/(10,0)/(5,5) CNQD, there is no conductance gap with QD’s size smaller than 7 layers, and the conductance peak around the interface quasilocalized state -0.26 eV disappears with QD sizes larger than 23 layers. In addition, for the (5,5)/(10,0)/(5,5) CNQD, the connection method can change the degree of electronic localization of intermediate (10,0) tube.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus, Phys. Rev. B 46, 1804 (1992)

    Article  Google Scholar 

  2. L. Chico, V.H. Crespi, L.X. Benedict, S.G. Louie, M.L. Cohen, Phys. Rev. Lett. 76, 971 (1996)

    Article  Google Scholar 

  3. J. Han, M.P. Anantram, R. Jaffe, J. Kong, H. Dai, Phys. Rev. B 57, 14983 (1998)

    Article  Google Scholar 

  4. Z. Yao, H.W.C. Postma, L. Balants, C. Dekker, Nature (London) 402, 273 (1999)

    Google Scholar 

  5. S.J. Tans, M.H. Devoret, H. Dai, A. Thess, R.E. Smalley, L.J. Geerligs, C. dekker, Nature 386, 474 (1997)

    Article  Google Scholar 

  6. D.H. Cohen, M. Bockrath, N.G. Chopra, A. Zettl, P.L. McEuen, A. Rinzler, A. Thess, R.E. Smalley, Physica B 251, 132 (1998)

    Google Scholar 

  7. J. Li, C. Papadopoulos, A. Rakitin, J. Xu, Nature (London) 402, 253 (1999)

    Google Scholar 

  8. A.N. Andriotis, M. Menon, D. Srivastava, L. Chernozatonskii, Phys. Rev. Lett. 87, 066802 (2001)

    Article  Google Scholar 

  9. L. Chico, M.P. Lopez Sancho, M.C. Munoz, Phys. Rev. Lett. 81, 1278 (1998)

    Article  Google Scholar 

  10. M.B. Nardelli, Phys. Rev. B 60, 7828 (1999)

    Article  Google Scholar 

  11. M.S. Ferreira, T.G. Dargam, R.B. Muniz, A. Latge, Phys. Rev. B 62, 16040 (2000)

    Article  Google Scholar 

  12. R. Kubo, J. Phys. Soc. Jpn 12, 570 (1957)

    MATH  Google Scholar 

  13. M. Buongiorno Nardelli, Phys. Rev. B 60, 7828 (1999)

    Article  Google Scholar 

  14. A. Rochefort, P. Avouris, Nano Lett. 2, 253 (2002)

    Article  Google Scholar 

  15. H. Liu, J. Chen, Acta Physica Sinica 52, 664 (2003)

    Google Scholar 

  16. H.Y. Zhu, D.J. Klein, T.G. Schmaltz, A. Rubio, N.H. March, J. Phys. Chem. Solids 59, 417 (1998)

    Article  Google Scholar 

  17. A. Rochefort, D.R. Salahub, Ph. Avouris, J. Phys. Chem. B 103, 641 (1999)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Liu.

Additional information

Received: 8 August 2003, Published online: 23 December 2003

PACS:

61.48. + c Fullerenes and fullerene-related materials - 71.20.Tx Fullerenes and related materials; intercalation compounds - 72.80.Rj Fullerenes and related materials - 68.55.Ln Defects and impurities: doping, implantation, distribution, concentration, etc.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, H., Tao, Y. Size effect of quantum conductance in single-walled carbon nanotube quantum dots. Eur. Phys. J. B 36, 411–418 (2003). https://doi.org/10.1140/epjb/e2003-00360-7

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2003-00360-7

Keywords

Navigation