Skip to main content
Log in

Gap nodes and time reversal symmetry breaking in strontium ruthenate

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

We study the superconducting state of Sr2RuO4 on the bases of a phenomenological but orbital specific description of the electron-electron attraction and a realistic quantitative account of the electronic structure in the normal state. We found that a simple model which features both ‘in plane’ and ‘out of plane’ coupling with strengths \(U_{\parallel} = 40\) meV and \(U_{\perp} = 48\) meV respectively reproduced the experimentally observed power law behaviour of the low temperature specific heat C v (T), superfluid density n s (T) and thermal conductivity in quantitative detail. Moreover, it predicts that the quasi-particle spectrum on the \(\gamma\)-sheet is fully gaped and the corresponding order parameter breaks the time reversal symmetry. We have also investigated the stability of this model to inclusion of further interaction constants in particular ‘proximity coupling’ between orbitals contributing to the \(\gamma\) sheet of the Fermi surface and the \(\alpha\) and \(\beta\) sheets. We found that the predictions of the model are robust under such changes. Finally, we have incorporated a description of weak disorder into the model and explored some of its consequences. For example we demonstrated that the disorder has a more significant effect on the f-wave component of the order parameter than on the p-wave one.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Maeno, T.M. Rice, M. Sigrist, Physics Today 54, 42 (2001)

    Google Scholar 

  2. A.P. Mackenzie, Y. Maeno, Rev. Mod. Phys. 75, 657 (2003)

    Article  Google Scholar 

  3. A.J. Leggett, Rev. Mod. Phys. 47, 331 (1975)

    Article  Google Scholar 

  4. A. Mackenzie, Y. Maeno, Physica B 280, 148 (2000)

    Article  Google Scholar 

  5. C. Bergemann, S.R. Julian, A.P. Mackenzie, S. NishiZaki, Y. Maeno, Phys. Rev. Lett. 84, 2662 (2000)

    Article  Google Scholar 

  6. T.M. Rice, M. Sigrist, J. Phys.: Condens. Matter 7, L643 (1995)

  7. K. Ishida, Nature 396, 658 (1998)

    Article  Google Scholar 

  8. J.A. Duffy, Phys. Rev. Lett. 85, 5412 (2000)

    Article  Google Scholar 

  9. S. NishiZaki, Y. Maeno, Z. Mao, J. Phys. Jpn 69, 336 (2000)

    Google Scholar 

  10. I. Bonalde, Phys. Rev. Lett. 85, 4775 (2000)

    Article  Google Scholar 

  11. K. Izawa, Phys. Rev. Lett. 86, 2653 (2001)

    Article  Google Scholar 

  12. G.M. Luke, Nature 394, 558 (1998)

    Article  Google Scholar 

  13. G.E. Volovik, L.P. Gorkov, Zh. Eksp. Teor. Fiz. 88, 1412 (1985) [Sov. Phys. JETP 61, 843 (1985)]

    Google Scholar 

  14. M. Ozaki, K. Machida, T. Ohmi, Prog. Theor. Phys. 75, 422 (1986)

    Google Scholar 

  15. M. Sigrist, T. M. Rice, Z. Phys. B 68, 9 (1987)

    Google Scholar 

  16. M. Ozaki, K. Machida, Phys. Rev. B 39, 4145 (1989)

    Article  Google Scholar 

  17. J.F. Annett, Adv. Phys. 39, 83 (1990)

    Google Scholar 

  18. M. Sigrist, K. Ueda, Rev. Mod. Phys. 63, 239 (1991)

    Article  Google Scholar 

  19. M.J. Graf, A.V. Balatsky, Phys. Rev. B 62, 9697 (2000)

    Article  Google Scholar 

  20. H. Won, K. Maki, Europhys. Lett. 52, 427 (2000)

    Article  Google Scholar 

  21. T. Dahm, H. Won, K. Maki, cond-mat/0006301

  22. I. Eremin, D. Manske, C. Koas, K.H. Bennemann, Europhys. Lett. 58, 871 (2002)

    Article  Google Scholar 

  23. D. Manske, I. Eremin, K.H. Bennemann, in New Trends in Superconductivity, edited by J.F. Annett, S. Kruchinin (Kluwer, 2002), pp. 293-305

  24. D.F. Agterberg, T.M. Rice, M. Sigrist, Phys. Rev. Lett. 73, 3374 (1997)

    Article  Google Scholar 

  25. M.E. Zhitomirsky, T.M. Rice, Phys. Rev. Lett. 87, 057001 (2001)

    Article  Google Scholar 

  26. J.F. Annett G. Litak, B.L. Gyorffy, K.I. Wysokiński, Phys. Rev. B 66, 134514 (2002)

    Article  Google Scholar 

  27. Y. Hasegawa, K. Machida, M. Ozaki, J. Phys. Jpn 69, 336 (2000)

    Google Scholar 

  28. A.P. Mackenzie, Phys. Rev. Lett. 76, 3786 (1996). Note the corrected Fermi surface parameters in: Y. Maeno, J. Phys. Soc. Jpn 66, 1405 (1997)

    Article  Google Scholar 

  29. Z. Szotek, B.L. Gyorffy, W.M. Temmerman, O.K. Andersen, O. Jepsen, J Phys.: Condens. Mat. 13, 8625 (2001)

    Article  Google Scholar 

  30. K. Miyake, D. Narikiyo, Phys. Rev. Lett. 83, 1423 (1999)

    Article  Google Scholar 

  31. A.M. Martin, G. Litak, B.L. Györffy, J.F. Annett, K.I. Wysokiński, Phys. Rev. B 60, 7523 (1999)

    Article  Google Scholar 

  32. G. Litak, J.F. Annett, B.L. Györffy, Acta Phys. Pol. A 97, 249 (2000)

    Google Scholar 

  33. G. Litak, J.F. Annett, B.L. Györffy, in Open Problems in Strongly Correlated Electron Systems, edited by J. Bonca (Kluwer Academic Publishers NATO Science Series, Dordrecht 2001), pp. 425-427

  34. G. Litak, Phys. Status Solidi (b) 229, 1427 (2002)

    Article  Google Scholar 

  35. D.F. Agterberg, Phys. Rev. B 60, R749 (1999)

  36. E. R. Hansen, A Table of Series and Products (Prentice Hall, Inc., Englewood Cliffs, N.J. 1975)

  37. R.Micnas, Rev. Mod. Phys. 62, 113 (1991)

    Article  Google Scholar 

  38. D.L. Cox, A. Zawadowski, Exotic Kondo Effects in Metals (Taylor and Francis, London 1999)

  39. G. Litak, J.F. Annett, B.L. Gyorffy, K.I. Wysokiński, in New Trends in Superconductivity, edited by J.F. Annett, S. Kruchinin (Kluwer Academic Publishers, Dordrecht 2002), pp. 307-316

  40. K.I. Wysokiński, G. Litak, J.F. Annett, B.L. Györffy, Phys. Status Solidi (b) 236, 325 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. F. Annett.

Additional information

Received: 15 October 2003, Published online: 23 December 2003

PACS:

74.70.Pq Ruthenates - 74.20.Rp Pairing symmetries (other than s-wave) - 74.25.Bt Thermodynamic properties

Rights and permissions

Reprints and permissions

About this article

Cite this article

Annett, J.F., Györffy, B.L., Litak, G. et al. Gap nodes and time reversal symmetry breaking in strontium ruthenate. Eur. Phys. J. B 36, 301–312 (2003). https://doi.org/10.1140/epjb/e2003-00348-3

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2003-00348-3

Keywords

Navigation