Skip to main content
Log in

The optimal velocity traffic flow models with open boundaries

  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

The effects of the open boundaries on the dynamical behavior of the optimal velocity traffic flow models with a delay time \(\tau\) allowing the car to reach its optimal velocity is studied using numerical simulations. The particles could enter the chain with a given injecting rate probability \(\alpha\), and could leave the system with a given extracting rate probability \(\beta \). In the absence of the variation of the delay time \(\Delta\tau\), it is found that the transition from unstable to metastable and from metastable to stable state occur under the effect of the probabilities rates \(\alpha\) and \(\beta \). However, for a fixed value of \(\alpha\), there exist a critical value of the extraction rate \(\beta_{c_1}\) above which the wave density disappears and the metastable state appears and a critical value \(\beta_{c_2}\) above which the metastable state disappears while the stable state appears. \(\beta_{c_1}\) and \(\beta_{c_2}\) depend on the values of \(\alpha\) and the variation of the delay time \(\Delta\tau\). Indeed \(\beta_{c_1}\) and \(\beta_{c_2}\) increase when increasing \(\alpha\) and/or decreasing \(\Delta\tau\). The flow of vehicles is calculated as a function of \(\alpha\), \(\beta \) and \(\Delta\tau\) for a fixed value of \(\tau\). Phase diagrams in the (\(\alpha,\beta\)) plane exhibits four different phases namely, unstable, metastable, stable. The transition line between stable phase and the unstable one is curved and it is of first order type. While the transition between stable (unstable) phase and the metastable phase are of second order type. The region of the metastable phase shrinks with increasing the variation of the delay time \(\Delta\tau\) and disappears completely above a critical value \(\Delta\tau_{c}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Traffic and Granular Flow, edited by D.E. Wolf, M. Schreckenberg, A. Bachem (World Scientific, Singapore, 1996)

  2. D. Helbing, Rev. Mod. Phys. 73, 1067 (2001)

    Article  Google Scholar 

  3. Traffic and Granular Flow, Vol. 97, edited by M. Schreckenberg, D.E. Wolf (Springer, Singapore, 1998)

  4. G.F. Newell, Oper. Res. 9, 209 (1961)

    MATH  Google Scholar 

  5. G.B. Whitham, Proc. R. Soc. London. Ser. A 428, 49 (1990)

    MathSciNet  MATH  Google Scholar 

  6. M. Bando, K. Hasibe, A. Nakayama, A. Shibata, Y. Sagiyma, Phys. Rev. E 51, 1035 (1995)

    Article  Google Scholar 

  7. T. Komatsu, S. Sasa. Phys. Rev. E 52, 5574 (1995)

    Article  Google Scholar 

  8. T. Nagatani, K. Nakanishi, Phys. Rev. E 57, 6415 (1998)

    Article  Google Scholar 

  9. T. Nagatani, K. Nakanishi, H. Emmerich, J. Phys. A 31, 5431 (1998)

    Article  MATH  Google Scholar 

  10. K. Nagel, M. Schreckenberg, J. Phys. I France 2, 2221 (1992)

    Article  Google Scholar 

  11. A. Benyoussef, H. Chakib, H. Ez-Zahraouy, Eur. Phys. J. B 8, 275 (1999)

    Article  Google Scholar 

  12. A. Benyoussef, N. Boccara, H. Chakib, H. Ez-Zahraouy, Chinese J. Phys. 39, 428 (2001)

    Google Scholar 

  13. T. Nagatani, Phys. Rev. E 48, 3290 (1993)

    Article  Google Scholar 

  14. D. Helbing, M. Schreckenberg, Phys. Rev. E 59, R2505 (1999)

  15. D. Helbing, Phys. Rev. E 53, 2366 (1996)

    Article  MathSciNet  Google Scholar 

  16. M. Treiber, A. Hennecke, D. Helbing, Phys. Rev. E 59, 239 (1999)

    Article  Google Scholar 

  17. T. Nagatani, Physica A 237, 67 (1997)

    Article  Google Scholar 

  18. T. Nagatani, Physica A 261, 599 (1998)

    Article  MathSciNet  Google Scholar 

  19. H.Y. Lee, H.W. Lee, D. Kim, Phys. Rev. E 59, 5101 (1999)

    Article  Google Scholar 

  20. N. Mitarai, H. Nakanishi, J. Phys. Soc. Jpn 68 4857 (1999)

    Google Scholar 

  21. T. Nagatani, Phys. Rev. E 61, 3564 (2000)

    Article  Google Scholar 

  22. T. Nagatani, Phys. Rev. E 61, 3534 (2000)

    Article  Google Scholar 

  23. T. Nagatani, Phys. Rev. E 60, 6395 (1999)

    Article  Google Scholar 

  24. T. Nagatani, Physica A 284, 405 (2000)

    Article  Google Scholar 

  25. T. Nagatani, Physica A 253, 353 (1998)

    Article  Google Scholar 

  26. K. Nagel, Phys. Rev. E 53, 4655 (1996)

    Article  Google Scholar 

  27. A. Benyoussef, H. Chakib, H. Ez-Zahraouy, Phys. Rev. E 68, 026129 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Ez-Zahraouy.

Additional information

Received: 23 July 2003, Published online: 8 December 2003

PACS:

05.50. + q Lattice theory and statistics (Ising, Potts, etc.) - 64.60.Cn Order-disorder transformations; statistical mechanics of model systems - 75.30.Kz Magnetic phase boundaries (including magnetic transitions, metamagnetism, etc.) - 82.20.Wt Computational modeling; simulation

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ez-Zahraouy, H., Benrihane, Z. & Benyoussef, A. The optimal velocity traffic flow models with open boundaries. Eur. Phys. J. B 36, 289–293 (2003). https://doi.org/10.1140/epjb/e2003-00346-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2003-00346-5

Keywords

Navigation