Skip to main content
Log in

Abstract.

The charge-carrier transport properties of ultrathin metallic films are analysed with ab initio methods using the density functional theory (DFT) on free-standing single crystalline slabs in the thickness range between 1 and 8 monolayers and compared with experiments for Pb films on Si(111). A strong interplay between bandstructure, quantised in the direction normal to the ultrathin film, charge-carrier scattering mechanisms and magnetoconduction was found. Based on the bandstructure obtained from the DFT, we used standard Boltzmann transport theory in two dimensions to obtain results for the electronic transport properties of 2 to 8 monolayers thick Pb(111) slabs with and without magnetic field. Comparison of calculations and experiment for the thickness dependence of the dc conductivity shows that the dominant scattering mechanism of electrons is diffuse elastic interface scattering for which the assumption of identical scattering times for all subbands and directions, used in this paper, is a good approximation. Within this model we can explain the thickness dependences of the electric conductivity and of the Hall coefficient as well as the anomalous behaviour of the first Pb layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Fuchs, Proc. Cambridge Philos. Soc. 34, 100 (1938)

    Google Scholar 

  2. E.H. Sondheimer, Adv. Phys. 1, 1 (1952)

    MATH  Google Scholar 

  3. J.R. Sambles, Thin Solid Fims 106, 321 (1983)

    Article  Google Scholar 

  4. H.E. Camblong, P.M. Levy, Phys. Rev. B 60, 15782 (1999)

    Article  Google Scholar 

  5. V.B. Sandomirskii, Zh. Eksp. Teor. Fiz. 52, 158 (1967)

    Google Scholar 

  6. N. Trivedi, N.W. Ashcroft, Phys. Rev. B 38, 12298 (1988)

    Article  Google Scholar 

  7. G. Govindaraj, V. Devanathan, Phys. Rev. B 34, 5904 (1986)

    Article  Google Scholar 

  8. Z. Tešanović, M.V. Jarić, S. Maekawa, Phys. Rev. Lett. 57, 2760 (1986)

    Article  Google Scholar 

  9. G. Fishman, D. Calecki, Phys. Rev. Lett. 62, 1302 (1989)

    Article  Google Scholar 

  10. D. Calecki, Phys. Rev. B 42, 6906 (1990)

    Article  Google Scholar 

  11. A.E. Meyerovich, A. Stepaniants, J. Phys.: Condens. Matter. 12, 5575 (2000)

    Article  Google Scholar 

  12. P. Joyez, D. Esteve, Phys. Rev. B 64, 155402 (2001)

    Article  Google Scholar 

  13. G. Palasantzas, J.Th.M. De Hosson, Phys. Rev. B 63, 125404 (2001)

    Article  Google Scholar 

  14. P. Saalfrank, Surf. Sci. 274, 449 (1992)

    Article  Google Scholar 

  15. G. Materzanini, P. Saalfrank, P.J.D. Lindan, Phys. Rev. B 63, 235405 (2001)

    Article  Google Scholar 

  16. M. Jałochowski, E. Bauer, Phys. Rev. B 37, 8622 (1988)

    Article  Google Scholar 

  17. M. Jałochowski, M. Hoffmann, E. Bauer, Phys. Rev. Lett. 76, 4227 (1996)

    Article  Google Scholar 

  18. I. Vilfan, M. Henzler, O. Pfennigstorf, H. Pfnür, Phys. Rev. B 66, 241306 (2002)

    Article  Google Scholar 

  19. J.P. Perdew, Y. Wang, Phys. Rev. B 45, 13244 (1992)

    Article  Google Scholar 

  20. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, WIEN2k, a full potential LAPW package (K. Schwarz, TU Vienna, 2001)

  21. E. Sjöstedt, L. Nordström, D.J. Singh, Solid State Comm. 114, 15 (2000)

    Article  Google Scholar 

  22. D.J. Singh, Plane waves, pseudopotentials, and the LAPW method (Kluwer Academic, Boston, MA, 1994)

  23. W.W. Schulz, P.B. Allen, N. Trivedi, Phys. Rev. B 45, 10886 (1992)

    Article  Google Scholar 

  24. O. Pfennigstorf , A. Petkova, H.L. Günter, M. Henzler, Phys. Rev. B 65, 45412 (2002)

    Article  Google Scholar 

  25. A. Houari, M. Mebrouki, A.F.R. Dib, F. Ould-Kaddour, Physica B 291, 387 (2000)

    Article  Google Scholar 

  26. G. Busch, J.J. Guntherrodt, Solid State Phys. 29, 335 (1974)

    Google Scholar 

  27. B. Movaghar, in Physics of Disordered Materials, edited by D. Adler (Plenum, New York, 1985)

  28. D. Nguyen-Manh, D. Mayou, G.J. Morgan, A. Pasturel, J. Phys. F: Met. Phys. 17, 999 (1987)

    Article  Google Scholar 

  29. A.F. Ioffe, A.R. Regel, Prog. Semicond. 4, 237 (1960)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Vilfan.

Additional information

Received: 19 September 2003, Published online: 8 December 2003

PACS:

73.50.Jt Electronic transport phenomena in thin films: Galvanomagnetic and other magnetotransport effects - 73.61.At Electrical properties of specific thin films: Metals and metallic alloys - 73.20.At Electron states at surfaces and interfaces - 71.15.Mb Density functional theory

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilfan, I., Pfnür, H. Charge-carrier transport properties of ultrathin Pb films. Eur. Phys. J. B 36, 281–287 (2003). https://doi.org/10.1140/epjb/e2003-00345-6

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2003-00345-6

Keywords

Navigation