Skip to main content
Log in

Density and current response functions in strongly disordered electron systems: diffusion, electrical conductivity and Einstein relation

  • OriginalPaper
  • Published:
The European Physical Journal B - Condensed Matter and Complex Systems Aims and scope Submit manuscript

Abstract.

We study noninteracting quantum charged particles (electron gas) subject to a strong random potential and perturbed by a weak classical electromagnetic field. We examine consequences of gauge invariance and charge conservation in the space of Bloch waves. We use two specific forms of the Ward identity between the one- and two-particle averaged Green functions to establish exact relations between the density and current response functions. In particular, we find precise conditions under which we can extract the current-current from the density-density correlation functions and vice versa. We use these results to prove a formula relating the density response and the electrical conductivity in strongly disordered systems. We introduce quantum diffusion as a response function that reduces to the diffusion constant in the static limit. We then derive Fick’s law, a quantum version of the Einstein relation and prove the existence of the diffusion pole in the quasistatic limit of the zero-temperature electron-hole correlation function. We show that the electrical conductivity controls the long-range spatial fluctuations of the electron-hole correlation function only in the static limit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R.J. Elliot, J.A. Krumhansl, P.L. Leath, Rev. Mod. Phys. 46, 465 (1974)

    Article  Google Scholar 

  2. M. Plischke, B. Bergersen,Equilibrium Statistical Physics (World Scientific, Singapore, 1994)

  3. R. Kubo, J. Phys. Soc. Jpn. 12, 570 (1957)

    MATH  Google Scholar 

  4. B. Velický, Phys. Rev. 184, 614 (1969)

    Article  Google Scholar 

  5. A. Gonis, Green functions for ordered and disordered systems, edited by E. van Groessen, E.M. de Jager (North Holland, Amsterdam, 1992), in the series Studies in Mathematical Physics

  6. I. Turek, V. Drchal, J. Kudrnovský, M. Šob, P. Weinberger, Electronic structure of disordered alloys, surfaces and interfaces (Kluwer, Boston, 1997)

  7. D. Vollhardt, P. Wölfle, in Electronic Phase Transitions, edited by W. Hanke, Yu. V. Kopaev (Elsevier Science Publishers B. V., Amsterdam, 1992)

  8. D. Belitz, T.R. Kirkpatrick, Rev. Mod. Phys. 66, 261 (1994)

    Article  Google Scholar 

  9. P.A. Lee, R.V. Ramakrishnan, Rev. Mod. Phys. 57, 287 (1985)

    Article  Google Scholar 

  10. J. Rammer,Quantum Transport Theory, Frontiers in Physics (Perseus Books, Reading 1998), Vol. 99, and references therein

  11. V. Janiš, Phys. Rev. B 64, 115115 (2001)

    Article  Google Scholar 

  12. B. Kramer, A. MacKinnon, Rep. Mod. Phys. 56, 1472 (1993)

    Google Scholar 

  13. Ch. P. Enz,A Course on Many - Body Theory Applied to Solid - State Physics (World Scientific, Singapore, 1992)

  14. G. Rickayzen, Green’s Functions and Condensed Matter, (Academic Press, London, 1980)

  15. G.D. Mahan, Many-particle physics (Plenum, New York, 2000), Sect. 3.8

  16. Note that in vacuum the compensating term for free electrons reduces to \(\Pi_{\alpha\beta}(\mathbf{0},0)= -\frac{n_0e^2}{m}\delta_{\alpha\beta}\), the result obtained in reference [15] from gauge invariance applied to the generalized momentum \(\mathbf{p}= m\mathbf{v} + \frac{e}{c}\mathbf{A}\)

  17. D. Vollhardt, P. Wölfle, Phys. Rev. B 22, 4666 (1980)

    Article  Google Scholar 

  18. S.V. Maleev, B.P. Toperverg, Zh. Eksp. Teor. Fiz. 69, 1440 ( 1975)

    Google Scholar 

  19. P.W. Anderson, Phys. Rev. 109, 1492 (1958)

    Article  Google Scholar 

  20. B.L. Altshuler, A.G. Aronov, in Electron-Electron Interactions in Disordered Systems, edited by A.L. Efros, M. Pollak (North-Holland, Amsterdam, 1985)

  21. A. Einstein, Investigations on the Theory of the Brownian Motion (Dover, New York, 1956)

  22. Note that the electric current is defined as a flow of positive charge

  23. D. Forster, Hydrodynamic Fluctuations, Broken Symmetry, and Correlation Functions (Addison-Wesley, N.Y., 1990)

  24. V. Janiš, Phys. Rev. B 40, 11331 (1989)

    Article  Google Scholar 

  25. V. Janiš, D. Vollhardt, Phys. Rev. B 46, 15712 (1992)

    Article  Google Scholar 

  26. A. Georges, G. Kotliar, W. Krauth, M. Rozenberg, Rev. Mod. Phys. 68, 13 (1996)

    Article  MathSciNet  Google Scholar 

  27. B.K. Nikolić, Phys. Rev. B 64, 165303 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Janiš.

Additional information

Received: 10 June 2003, Published online: 22 September 2003

PACS:

72.10.Bg General formulation of transport theory - 72.15.Eb Electrical and thermal conduction in crystalline metals and alloys - 72.15.Qm Scattering mechanisms and Kondo effect

Rights and permissions

Reprints and permissions

About this article

Cite this article

Janiš, V., Kolorenc, J. & Špicka, V. Density and current response functions in strongly disordered electron systems: diffusion, electrical conductivity and Einstein relation. Eur. Phys. J. B 35, 77–91 (2003). https://doi.org/10.1140/epjb/e2003-00258-4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjb/e2003-00258-4

Keywords

Navigation