Skip to main content
Log in

The Supernova–GRB connection

  • Cold and hot nuclear matter
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

We study the effects of color superconductivity on the structure and formation of compact stars. We show that it is possible to satisfy most of recent observational boundaries on masses and radii if a diquark condensate forms in a hybrid or a quark star. Moreover, we find that a huge amount of energy, of the order of 1053 erg, can be released in the conversion from a (metastable) hadronic star into a (stable) hybrid or quark star, if the presence of a color superconducting phase is taken into account. Accordingly to the scenario proposed in Astrophys.J.586(2003)1250, the energy released in this conversion can power a Gamma Ray Burst. Possible experimental evidences, indicating a range of time delay between a Supernova explosion and a subsequent Gamma Ray Burst, are here discussed and interpreted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • 1. L. Amati et al.: Science 290, 953 (2000)

  • 2. J.N. Reeves et al.: Nature 414, 512 (2002)

  • 3. J. Hjorth et al.: Nature 423, 847 (2003)

  • 4. Z. Berezhiani, I. Bombaci, A. Drago, F. Frontera, and A. Lavagno: Astrophys. J. 586, 1250 (2003)

    Article  Google Scholar 

  • 5. M.G. Alford, K. Rajagopal, and F. Wilczek: Nucl. Phys. B 537, 443 (1999)

    Article  Google Scholar 

  • 6. M.G. Alford, J. Berges, and K. Rajagopal: Nucl. Phys. B 558, 219 (1999)

    Article  Google Scholar 

  • 7. T. Schafer and F. Wilczek: Phys. Rev. D 60, 074014 (1999)

  • 8. M.G. Alford and S. Reddy: Phys. Rev. D 67, 074024 (2003)

  • 9. M. Baldo, M. Buballa, F. Burgio, F. Neumann, M. Oertel, and H.J. Schulze: Phys. Lett. B 562, 153 (2003)

    Article  Google Scholar 

  • 10. D. Blaschke, H. Grigorian, D.N. Aguilera, S. Yasui, and H. Toki: AIP Conf. Proc. 660, 209 (2003)

    Article  Google Scholar 

  • 11. N.K. Glendenning and S.A. Moszkowski: Phys. Rev. Lett. 67, 2414 (1991)

    Google Scholar 

  • 12. J. Negele and D. Vautherin: Nucl. Phys. A 207, 298 (1973)

  • 13. G. Baym, C. Pethick, and D. Sutherland: Astrophys. J. 170, 299 (1971)

    Article  Google Scholar 

  • 14. G. Lugones and J.E. Horvath: Phys. Rev. D 66, 074017 (2002)

  • 15. D. Sanwal, G.G. Pavlov, V.E. Zavlin, and M.A. Teter: Astrophys. J. 574, L61 (2002)

  • 16. J. Cottam, F. Paerels, and M. Mendez: Nature 420, 51 (2002)

    Article  Google Scholar 

  • 17. H. Quaintrell et al.: arXiv:astro-ph/0301243

  • 18. C.O. Heinke, J.E. Grindlay, D.A. Lloyd, and P.D. Edmonds: Astrophys. J. 588, 452 (2003)

    Article  Google Scholar 

  • 19. M. Dey, I. Bombaci, J. Dey, S. Ray, and B.C. Samanta: Phys. Lett. B 438, 123 (1998) [Addendum-ibid. B 447, 352 (1999)]

    Article  Google Scholar 

  • 20. X.D. Li, I. Bombaci, M. Dey, J. Dey, and E.P. van den Heuvel: Phys. Rev. Lett. 83, 3776 (1999)

    Article  Google Scholar 

  • 21. V. Burwitz, F. Haberl, R. Neuhaeuser, P. Predehl, J. Truemper, and V.E. Zavlin: Astron. Astrophys. 399, 1109 (2003)

    Article  Google Scholar 

  • 22. J. Poutanen and M. Gierlinski: arXiv:astro-ph/0303084

  • 23. A. Drago and U. Tambini: J. Phys. G. 25, 971 (1999)

  • 24. D.K. Hong, S.D.H. Hsu, and F. Sannino: Phys. Lett. B 516, 362 (2001)

    Article  Google Scholar 

  • 25. O.G. Benvenuto and G. Lugones: Mon. Not. R. Astron. Soc. 304, L25 (1999)

  • 26. J.A. Pons, A.W. Steiner, M. Prakash, and J.M. Lattimer: Phys. Rev. Lett. 86, 5223 (2001)

    Article  Google Scholar 

  • 27. I.M. Lifshitz and Yu. Kagan: Zh. Eksp. Teor. Fiz. 62, 385 (1972) [Sov. Phys. JETP, 35, 206]

  • 28. M.S. Berger and R.L. Jaffe: Phys. Rev. C 35, 213 (1987)

  • 29. D.N. Voskresensky, M. Yasuhira, and T. Tatsumi: Nucl. Phys. A 723, 291 (2003)

    Google Scholar 

  • 30. M.G. Alford, K. Rajagopal, S. Reddy, and F. Wilczek: Phys. Rev. D 64, 074017 (2001)

    Article  Google Scholar 

  • 31. M. Di Toro, A. Drago, V. Greco, and A. Lavagno: arXiv:nucl-th/0210052

  • 32. K. Iida and K. Sato: Phys. Rev. C 58, 2538 (1998)

  • 33. A. Olinto: Phys. Lett. B 192, 71 (1987)

  • 34. J.E. Horvath and O.G. Benvenuto: Phys. Lett. B 213, 516 (1988)

  • 35. M. Prakash, I. Bombaci, M. Prakash, P.J. Ellis, J.M. Lattimer, and R. Knorren: Phys. Rept. 280, 1 (1997)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Drago, A., Lavagno, A. & Pagliara, G. The Supernova–GRB connection. Eur. Phys. J. A 19 (Suppl 1), 197–201 (2004). https://doi.org/10.1140/epjad/s2004-03-033-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjad/s2004-03-033-9

PACS codes.

Navigation