Skip to main content
Log in

Recent high-precision mass measurements with the Penning trap spectrometer ISOLTRAP

  • ENAM 2004
  • Published:
The European Physical Journal A - Hadrons and Nuclei Aims and scope Submit manuscript

Abstract.

The Penning trap mass spectrometer ISOLTRAP has to date been used for the determination of close to 300 masses of radionuclides. A relative mass uncertainty of 10-8 can now be reached. Recent highlights were measurements of rp-process nuclides as for instance 72-74Kr or superallowed β emitters like 22Mg, 74Rb and 34Ar. The heaviest nuclides measured so far with ISOLTRAP are neutron-rich radium and francium isotopes. An overview of ISOLTRAP mass measurements and details about the recent experiment on 229-232Ra and 230Fr are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. D. Lunney, J.M. Pearson, C. Thibault, Rev. Mod. Phys. 75, 1021 (2003).

    Article  Google Scholar 

  2. G. Bollen, Phys. Rev. C 46, R2140 (1992).

  3. J. Van Roosbroeck, Phys. Rev. Lett. 92, 112501 (2004).

    Article  PubMed  Google Scholar 

  4. S. Schwarz, Nucl. Phys. A 693, 533 (2001).

    Article  Google Scholar 

  5. G. Wallerstein, Rev. Mod. Phys. 69, 995 (2002).

    Article  Google Scholar 

  6. K.L. Kratz, Hyperfine Interact. 129, 185 (2000).

    Article  Google Scholar 

  7. H. Schatz, Phys. Rep. 294, 167 (1998).

    Article  Google Scholar 

  8. D. Rodríguez, Phys. Rev. Lett. 93, 161104 (2004).

    Article  PubMed  Google Scholar 

  9. J.C. Hardy, I.S. Towner, Hyperfine Interact. 132, 115 (2001).

    Article  Google Scholar 

  10. I.S. Towner, J.C. Hardy, J. Phys. G 29, 197 (2003).

    Article  Google Scholar 

  11. A. Kellerbauer, Phys. Rev. Lett. 93, 072502 (2004).

    Article  PubMed  Google Scholar 

  12. M. Mukherjee, Phys. Rev. Lett. 93, 150801 (2004).

    Article  PubMed  Google Scholar 

  13. F. Herfurth, Eur. Phys. J. A 15, 17 (2002).

    Google Scholar 

  14. A. Kellerbauer, Eur. Phys. J. D 22, 53 (2003).

    Google Scholar 

  15. K. Blaum, J. Phys. B 36, 921 (2003).

    Google Scholar 

  16. E. Kugler, Hyperfine Interact. 129, 23 (2000).

    Article  Google Scholar 

  17. F. Herfurth, Nucl. Instrum. Methods A 469, 254 (2001).

    Google Scholar 

  18. H. Raimbault-Hartmann, Nucl. Instrum. Methods B 126, 378 (1997).

    Article  Google Scholar 

  19. G. Bollen, Nucl. Instrum. Methods A 368, 675 (1996).

    Google Scholar 

  20. K. Blaum, Europhys. Lett. 67, 586 (2004).

    Article  Google Scholar 

  21. G. Bollen, Hyperfine. Interact. 38, 793 (1987).

    Google Scholar 

  22. H. Stolzenberg, Phys. Rev. Lett. 65, 3104 (1990).

    Article  PubMed  Google Scholar 

  23. K. Blaum, Nucl. Phys. A 746, 305 (2004).

    Article  Google Scholar 

  24. F. Herfurth, Phys. Rev. Lett. 87, 142501 (2001).

    Article  PubMed  Google Scholar 

  25. K. Blaum, Phys. Rev. Lett. 91, 260801 (2003).

    Article  PubMed  Google Scholar 

  26. C. Guénaut, these proceedings.

  27. C. Guénaut, to be published.

  28. T. Otto, Nucl. Phys. A 567, 281 (1994).

    Article  Google Scholar 

  29. H. Raimbault-Hartmann, Nucl. Phys. A 706, 3 (2002).

    Article  Google Scholar 

  30. G. Sikler, Proceedings of the 3rd International Conference on Exotic Nuclei and Masses, Hämeenlinna, Finland 2001, edited by J. Äystö (Springer Verlag, 2002), mass values to be published, p. 48.

  31. J. Dilling, Eur. Phys. J. A 22, 163 (2004).

    Article  Google Scholar 

  32. F. Ames, Nucl. Phys. A 651, 3 (1999).

    Article  Google Scholar 

  33. C. Weber, to be published.

  34. D. Beck, Eur. Phys. J. A 8, 307 (2000).

    Article  Google Scholar 

  35. G. Bollen, Hyperfine Interact. 132, 215 (2001).

    Article  Google Scholar 

  36. G. Bollen, J. Mod. Optics 39, 257 (1992).

    Google Scholar 

  37. F. Herfurth, Phys. Rev. Lett. 87, 142501 (2001).

    Article  PubMed  Google Scholar 

  38. G. Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A 729, 337 (2003).

    Article  Google Scholar 

  39. J.C. Hardy, Phys. Rev. Lett. 91, 082501 (2003).

    Article  PubMed  Google Scholar 

  40. I.S. Towner, J.C. Hardy, Phys. Rev. C 66, 035501 (2002).

    Article  Google Scholar 

  41. J.C. Hardy, these proceedings.

  42. P.J. Mohr, B.N. Taylor, Rev. Mod. Phys. 72, 351 (2000), 1998 CODATA values.

    Article  Google Scholar 

  43. A. Herlert, New. J. Phys. 7, 44 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Herfurth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herfurth, F., Audi, G., Beck, D. et al. Recent high-precision mass measurements with the Penning trap spectrometer ISOLTRAP. Eur. Phys. J. A 25 (Suppl 1), 17–21 (2005). https://doi.org/10.1140/epjad/i2005-06-031-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1140/epjad/i2005-06-031-3

PACS.

Navigation