Abstract
Aiming at the relation between QCD and the quark model, we consider projections of gauge configurations generated in quenched lattice QCD simulations in the Coulomb gauge on a 16\(^{\textrm{3}}\) \(\mathrm \times \) 32, \(\mathrm \beta \) = 6.0 lattice. First, we focus on a fact that the static quark-antiquark potential is independent of spatial gauge fields. We explicitly confirm this by performing \(\textbf{A}\) = 0 projection, where spatial gauge fields are all set to zero. We also apply the \(\textbf{A}\) = 0 projection to light hadron masses and find that nucleon and delta baryon masses are almost degenerate, suggesting vanishing of the color-magnetic interactions. After considering the physical meaning of the \(\textbf{A}\) = 0 projection, we next propose a generalized projection, where spatial gauge fields are expanded in terms of Faddeev–Popov eigenmodes and only some eigenmodes are left. We apply the proposed projection to light hadron and glueball masses and find that the N-\(\mathrm \Delta \) and 0\(^{\mathrm{++}}\)–2\(^{\mathrm{++}}\) mass splittings become evident when projected with more than 33 (0.10 %) low-lying eigenmodes, suggesting emergence of the color-magnetic interactions. We also find that the original hadron masses are approximately reproduced with just 328 (1.00 %) low-lying eigenmodes. These findings indicate an important role of low-lying eigenmodes on hadron masses and would be useful in clarifying the relation between QCD and the quark model.
Similar content being viewed by others
Data Availibility Statement
This manuscript has associated data in a data repository. [Author’s comment: Raw data were generated at Kyoto University. Derived data supporting the findings of this study are available from the authors [H. Ohata, H. Suganuma] on request.]
References
H.D. Politzer, Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346–1349 (1973). https://doi.org/10.1103/PhysRevLett.30.1346
D.J. Gross, F. Wilczek, Ultraviolet behavior of nonabelian Gauge theories. Phys. Rev. Lett. 30, 1343–1346 (1973). https://doi.org/10.1103/PhysRevLett.30.1343
K.G. Wilson, Confinement of quarks. Phys. Rev. D 10, 2445–2459 (1974). https://doi.org/10.1103/PhysRevD.10.2445
M. Creutz, Monte Carlo study of quantized SU(2) Gauge theory. Phys. Rev. D 21, 2308–2315 (1980). https://doi.org/10.1103/PhysRevD.21.2308
M. Gell-Mann, A schematic model of Baryons and Mesons. Phys. Lett. 8, 214–215 (1964). https://doi.org/10.1016/S0031-9163(64)92001-3
G. Zweig, An SU(3) model for strong interaction symmetry and its breaking. Version 1 (1964)
G. Zweig, In: Lichtenberg, D.B., Rosen, S.P. (eds.) An SU(3) model for strong interaction symmetry and its breaking. Version 2, 22–101 (1964)
A. De Rujula, H. Georgi, S.L. Glashow, Hadron masses in a Gauge theory. Phys. Rev. D 12, 147–162 (1975). https://doi.org/10.1103/PhysRevD.12.147
M. Oka, K. Yazaki, Nuclear force in a Quark model. Phys. Lett. B 90, 41–44 (1980). https://doi.org/10.1016/0370-2693(80)90046-5
M. Oka, K. Yazaki, Short range part of Baryon Baryon interaction in a Quark Model. 1. Formulation. Prog. Theor. Phys. 66, 556–571 (1981). https://doi.org/10.1143/PTP.66.556
S. Godfrey, N. Isgur, Mesons in a relativized quark model with chromodynamics. Phys. Rev. D 32, 189–231 (1985). https://doi.org/10.1103/PhysRevD.32.189
S. Capstick, N. Isgur, Baryons in a relativized quark model with chromodynamics. Phys. Rev. D 34(9), 2809–2835 (1986). https://doi.org/10.1103/physrevd.34.2809
U. Loring, B.C. Metsch, H.R. Petry, The Light baryon spectrum in a relativistic quark model with instanton induced quark forces: The Nonstrange baryon spectrum and ground states. Eur. Phys. J. A 10, 395–446 (2001). https://doi.org/10.1007/s100500170105. arXiv:hep-ph/0103289
J. Vijande, F. Fernandez, A. Valcarce, Constituent quark model study of the meson spectra. J. Phys. G 31, 481 (2005). https://doi.org/10.1088/0954-3899/31/5/017. arXiv:hep-ph/0411299
A. Valcarce, H. Garcilazo, F. Fernandez, P. Gonzalez, Quark-model study of few-baryon systems. Rept. Prog. Phys. 68, 965–1042 (2005). https://doi.org/10.1088/0034-4885/68/5/R01. arXiv:hep-ph/0502173
D. Ebert, R.N. Faustov, V.O. Galkin, Masses of excited heavy baryons in the relativistic quark model. Phys. Lett. B 659, 612–620 (2008). https://doi.org/10.1016/j.physletb.2007.11.037. arXiv:0705.2957 [hep-ph]
D. Ebert, R.N. Faustov, V.O. Galkin, Mass spectra and Regge trajectories of light mesons in the relativistic quark model. Phys. Rev. D 79, 114029 (2009). https://doi.org/10.1103/PhysRevD.79.114029. arXiv:0903.5183 [hep-ph]
J. Vijande, A. Valcarce, N. Barnea, Exotic meson-meson molecules and compact four-quark states. Phys. Rev. D 79, 074010 (2009). https://doi.org/10.1103/PhysRevD.79.074010. arXiv:0903.2949 [hep-ph]
Y.-R. Liu, H.-X. Chen, W. Chen, X. Liu, S.-L. Zhu, Pentaquark and Tetraquark states. Prog. Part. Nucl. Phys. 107, 237–320 (2019). https://doi.org/10.1016/j.ppnp.2019.04.003. arXiv:1903.11976 [hep-ph]
N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C.E. Thomas, A. Vairo, C.-Z. Yuan, The \(XYZ\) states: experimental and theoretical status and perspectives. Phys. Rept. 873, 1–154 (2020). https://doi.org/10.1016/j.physrep.2020.05.001. arXiv:1907.07583 [hep-ex]
R.L. Workman et al., Review of particle physics. PTEP 2022, 83–91 (2022). https://doi.org/10.1093/ptep/ptac097
H. Suganuma, In: Tanihata, I., Toki, H., Kajino, T. (eds.) Quantum Chromodynamics, Quark Confinement, and Chiral Symmetry Breaking: A Bridge Between Elementary Particle Physics and Nuclear Physics, pp. 1–48 (2023). https://doi.org/10.1007/978-981-15-8818-1_22-1
V.A. Miransky, On the quark effective mass in QCD. Sov. J. Nucl. Phys. 38, 280 (1983). (IN RUSSIAN)
K. Higashijima, Dynamical chiral symmetry breaking. Phys. Rev. D 29, 1228 (1984). https://doi.org/10.1103/PhysRevD.29.1228
J.I. Skullerud, A.G. Williams, Quark propagator in Landau gauge. Phys. Rev. D 63, 054508 (2001). https://doi.org/10.1103/PhysRevD.63.054508. arXiv:hep-lat/0007028
J. Skullerud, D.B. Leinweber, A.G. Williams, Nonperturbative improvement and tree level correction of the quark propagator. Phys. Rev. D 64, 074508 (2001). https://doi.org/10.1103/PhysRevD.64.074508. arXiv:hep-lat/0102013
P.O. Bowman, U.M. Heller, A.G. Williams, Lattice quark propagator with staggered quarks in Landau and Laplacian gauges. Phys. Rev. D 66, 014505 (2002). https://doi.org/10.1103/PhysRevD.66.014505. arXiv:hep-lat/0203001
F.D.R. Bonnet, P.O. Bowman, D.B. Leinweber, A.G. Williams, J.-B. Zhang, Overlap quark propagator in Landau gauge. Phys. Rev. D 65, 114503 (2002). https://doi.org/10.1103/PhysRevD.65.114503. arXiv:hep-lat/0202003
J.B. Zhang, P.O. Bowman, D.B. Leinweber, A.G. Williams, F.D.R. Bonnet, Scaling behavior of the overlap quark propagator in Landau gauge. Phys. Rev. D 70, 034505 (2004). https://doi.org/10.1103/PhysRevD.70.034505. arXiv:hep-lat/0301018
P.O. Bowman, U.M. Heller, D.B. Leinweber, M.B. Parappilly, A.G. Williams, Unquenched gluon propagator in Landau gauge. Phys. Rev. D 70, 034509 (2004). https://doi.org/10.1103/PhysRevD.70.034509. arXiv:hep-lat/0402032
A.P. Szczepaniak, E.S. Swanson, Coulomb gauge QCD, confinement, and the constituent representation. Phys. Rev. D 65, 025012 (2001). https://doi.org/10.1103/PhysRevD.65.025012. arXiv:hep-ph/0107078
G. Hooft, Topology of the Gauge condition and new confinement phases in nonabelian Gauge theories. Nucl. Phys. B 190, 455–478 (1981). https://doi.org/10.1016/0550-3213(81)90442-9
A.S. Kronfeld, G. Schierholz, U.J. Wiese, Topology and dynamics of the confinement mechanism. Nucl. Phys. B 293, 461–478 (1987). https://doi.org/10.1016/0550-3213(87)90080-0
A.S. Kronfeld, M.L. Laursen, G. Schierholz, U.J. Wiese, Monopole condensation and color confinement. Phys. Lett. B 198, 516–520 (1987). https://doi.org/10.1016/0370-2693(87)90910-5
L. Del Debbio, M. Faber, J. Greensite, S. Olejnik, Center dominance and Z(2) vortices in SU(2) lattice gauge theory. Phys. Rev. D 55, 2298–2306 (1997). https://doi.org/10.1103/PhysRevD.55.2298. arXiv:hep-lat/9610005
L. Del Debbio, M. Faber, J. Giedt, J. Greensite, S. Olejnik, Detection of center vortices in the lattice Yang–Mills vacuum. Phys. Rev. D 58, 094501 (1998). https://doi.org/10.1103/PhysRevD.58.094501. arXiv:hep-lat/9801027
K. Huang, Quarks, Leptons and Gauge Fields, (1982)
T. Iritani, H. Suganuma, Lattice QCD analysis for Faddeev–Popov eigenmodes in terms of gluonic momentum components in the Coulomb gauge. Phys. Rev. D 86, 074034 (2012). https://doi.org/10.1103/PhysRevD.86.074034. arXiv:1204.6591 [hep-lat]
V.N. Gribov, Quantization of nonabelian Gauge theories. Nucl. Phys. B 139, 1 (1978). https://doi.org/10.1016/0550-3213(78)90175-X
D. Zwanziger, Lattice Coulomb Hamiltonian and static color Coulomb field. Nucl. Phys. B 485, 185–240 (1997). https://doi.org/10.1016/S0550-3213(96)00566-4. arXiv:hep-th/9603203
D. Zwanziger, Renormalization in the Coulomb gauge and order parameter for confinement in QCD. Nucl. Phys. B 518, 237–272 (1998). https://doi.org/10.1016/S0550-3213(98)00031-5
D. Zwanziger, No confinement without Coulomb confinement. Phys. Rev. Lett. 90, 102001 (2003). https://doi.org/10.1103/PhysRevLett.90.102001. arXiv:hep-lat/0209105
J. Greensite, C.B. Thorn, Gluon chain model of the confining force. JHEP 02, 014 (2002). https://doi.org/10.1088/1126-6708/2002/02/014. arXiv:hep-ph/0112326
G. Hooft, Perturbative confinement. Nucl. Phys. B Proc. Suppl. 121, 333–340 (2003). https://doi.org/10.1016/S0920-5632(03)01872-3. arXiv:hep-th/0207179
H.J. Rothe, Lattice Gauge Theories : An Introduction, vol. 43, 4th edn. (World Scientific Publishing Company, Singapore, 2012). https://doi.org/10.1142/8229
T. Iritani, H. Suganuma, Instantaneous interquark potential in generalized Landau Gauge in SU(3) lattice QCD: A linkage between the Landau and the Coulomb Gauges. Phys. Rev. D 83, 054502 (2011). https://doi.org/10.1103/PhysRevD.83.054502. arXiv:1102.0920 [hep-lat]
M. Luscher, S. Sint, R. Sommer, P. Weisz, U. Wolff, Nonperturbative O(a) improvement of lattice QCD. Nucl. Phys. B 491, 323–343 (1997). https://doi.org/10.1016/S0550-3213(97)00080-1. arXiv:hep-lat/9609035
S. Aoki, R. Burkhalter, M. Fukugita, S. Hashimoto, K.-I. Ishikawa, N. Ishizuka, Y. Iwasaki, K. Kanaya, T. Kaneko, Y. Kuramashi, M. Okawa, T. Onogi, N. Tsutsui, A. Ukawa, N. Yamada, T. Yoshié, Light hadron spectroscopy with two flavors of O(a) improved dynamical quarks. Phys. Rev. D 68, 054502 (2003). https://doi.org/10.1103/PhysRevD.68.054502. arXiv:hep-lat/0212039
K. Ishikawa, M. Teper, G. Schierholz, The Glueball mass spectrum in QCD: first results of a lattice Monte Carlo calculation. Phys. Lett. B 110, 399–405 (1982). (10.1016/0370-2693(82)91281-3)
V. Hernandez, J.E. Roman, V. Vidal, SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Software 31(3), 351–362 (2005)
A. Yamamoto, H. Suganuma, Lattice analysis for the energy scale of QCD phenomena. Phys. Rev. Lett. 101, 241601 (2008). https://doi.org/10.1103/PhysRevLett.101.241601. arXiv:0808.1120 [hep-lat]
A. Yamamoto, H. Suganuma, Relevant energy scale of color confinement from lattice QCD. Phys. Rev. D 79, 054504 (2009). https://doi.org/10.1103/PhysRevD.79.054504. arXiv:0811.3845 [hep-lat]
M. Teper, An improved method for lattice Glueball calculations. Phys. Lett. B 183, 345 (1987). https://doi.org/10.1016/0370-2693(87)90976-2
S. Ueda, S. Aoki, T. Aoyama, K. Kanaya, H. Matsufuru, S. Motoki, Y. Namekawa, H. Nemura, Y. Taniguchi, N. Ukita, Development of an object oriented lattice QCD code ‘Bridge++’. J. Phys. Conf. Ser. 523, 012046 (2014). https://doi.org/10.1088/1742-6596/523/1/012046
Acknowledgements
H.O. was supported by a Grant-in-Aid for JSPS Fellows (Grant No.21J20089). H.S. was supported by a Grants-in-Aid for Scientific Research [19K03869] from Japan Society for the Promotion of Science. This work was in part based on Bridge++ code [54]. We have used SLEPc [50] to solve eigenvalue problems for the Faddeev–Popov operator. The numerical simulations have been carried out on Yukawa-21 at Yukawa Institute for Theoretical Physics, Kyoto University.
Author information
Authors and Affiliations
Corresponding author
Additional information
Communicated by Carsten Urbach.
hopping parameters
hopping parameters
The hopping parameters used in hadron mass measurements under the eigenmode projection remaining low/high-lying FP modes are listed in Tables 3 and 4, respectively. We roughly tuned them to cover the range of \(m_{\pi } / m_{\rho } = 0.80 - 0.60\). The resulting \(m_{\pi } / m_{\rho }\) are also listed.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Ohata, H., Suganuma, H. Remnants of quark model in lattice QCD simulation in the Coulomb gauge. Eur. Phys. J. A 60, 97 (2024). https://doi.org/10.1140/epja/s10050-024-01327-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1140/epja/s10050-024-01327-1