Skip to main content
Log in

Remnants of quark model in lattice QCD simulation in the Coulomb gauge

  • Regular Article - Theoretical Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Aiming at the relation between QCD and the quark model, we consider projections of gauge configurations generated in quenched lattice QCD simulations in the Coulomb gauge on a 16\(^{\textrm{3}}\) \(\mathrm \times \) 32, \(\mathrm \beta \) = 6.0 lattice. First, we focus on a fact that the static quark-antiquark potential is independent of spatial gauge fields. We explicitly confirm this by performing \(\textbf{A}\) = 0 projection, where spatial gauge fields are all set to zero. We also apply the \(\textbf{A}\) = 0 projection to light hadron masses and find that nucleon and delta baryon masses are almost degenerate, suggesting vanishing of the color-magnetic interactions. After considering the physical meaning of the \(\textbf{A}\) = 0 projection, we next propose a generalized projection, where spatial gauge fields are expanded in terms of Faddeev–Popov eigenmodes and only some eigenmodes are left. We apply the proposed projection to light hadron and glueball masses and find that the N-\(\mathrm \Delta \) and 0\(^{\mathrm{++}}\)–2\(^{\mathrm{++}}\) mass splittings become evident when projected with more than 33 (0.10 %) low-lying eigenmodes, suggesting emergence of the color-magnetic interactions. We also find that the original hadron masses are approximately reproduced with just 328 (1.00 %) low-lying eigenmodes. These findings indicate an important role of low-lying eigenmodes on hadron masses and would be useful in clarifying the relation between QCD and the quark model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availibility Statement

This manuscript has associated data in a data repository. [Author’s comment: Raw data were generated at Kyoto University. Derived data supporting the findings of this study are available from the authors [H. Ohata, H. Suganuma] on request.]

References

  1. H.D. Politzer, Reliable perturbative results for strong interactions? Phys. Rev. Lett. 30, 1346–1349 (1973). https://doi.org/10.1103/PhysRevLett.30.1346

    Article  ADS  Google Scholar 

  2. D.J. Gross, F. Wilczek, Ultraviolet behavior of nonabelian Gauge theories. Phys. Rev. Lett. 30, 1343–1346 (1973). https://doi.org/10.1103/PhysRevLett.30.1343

    Article  ADS  Google Scholar 

  3. K.G. Wilson, Confinement of quarks. Phys. Rev. D 10, 2445–2459 (1974). https://doi.org/10.1103/PhysRevD.10.2445

    Article  ADS  Google Scholar 

  4. M. Creutz, Monte Carlo study of quantized SU(2) Gauge theory. Phys. Rev. D 21, 2308–2315 (1980). https://doi.org/10.1103/PhysRevD.21.2308

    Article  ADS  MathSciNet  Google Scholar 

  5. M. Gell-Mann, A schematic model of Baryons and Mesons. Phys. Lett. 8, 214–215 (1964). https://doi.org/10.1016/S0031-9163(64)92001-3

    Article  ADS  Google Scholar 

  6. G. Zweig, An SU(3) model for strong interaction symmetry and its breaking. Version 1 (1964)

  7. G. Zweig, In: Lichtenberg, D.B., Rosen, S.P. (eds.) An SU(3) model for strong interaction symmetry and its breaking. Version 2, 22–101 (1964)

  8. A. De Rujula, H. Georgi, S.L. Glashow, Hadron masses in a Gauge theory. Phys. Rev. D 12, 147–162 (1975). https://doi.org/10.1103/PhysRevD.12.147

    Article  ADS  Google Scholar 

  9. M. Oka, K. Yazaki, Nuclear force in a Quark model. Phys. Lett. B 90, 41–44 (1980). https://doi.org/10.1016/0370-2693(80)90046-5

    Article  ADS  Google Scholar 

  10. M. Oka, K. Yazaki, Short range part of Baryon Baryon interaction in a Quark Model. 1. Formulation. Prog. Theor. Phys. 66, 556–571 (1981). https://doi.org/10.1143/PTP.66.556

    Article  ADS  Google Scholar 

  11. S. Godfrey, N. Isgur, Mesons in a relativized quark model with chromodynamics. Phys. Rev. D 32, 189–231 (1985). https://doi.org/10.1103/PhysRevD.32.189

    Article  ADS  Google Scholar 

  12. S. Capstick, N. Isgur, Baryons in a relativized quark model with chromodynamics. Phys. Rev. D 34(9), 2809–2835 (1986). https://doi.org/10.1103/physrevd.34.2809

    Article  ADS  Google Scholar 

  13. U. Loring, B.C. Metsch, H.R. Petry, The Light baryon spectrum in a relativistic quark model with instanton induced quark forces: The Nonstrange baryon spectrum and ground states. Eur. Phys. J. A 10, 395–446 (2001). https://doi.org/10.1007/s100500170105. arXiv:hep-ph/0103289

    Article  ADS  Google Scholar 

  14. J. Vijande, F. Fernandez, A. Valcarce, Constituent quark model study of the meson spectra. J. Phys. G 31, 481 (2005). https://doi.org/10.1088/0954-3899/31/5/017. arXiv:hep-ph/0411299

    Article  ADS  Google Scholar 

  15. A. Valcarce, H. Garcilazo, F. Fernandez, P. Gonzalez, Quark-model study of few-baryon systems. Rept. Prog. Phys. 68, 965–1042 (2005). https://doi.org/10.1088/0034-4885/68/5/R01. arXiv:hep-ph/0502173

    Article  ADS  Google Scholar 

  16. D. Ebert, R.N. Faustov, V.O. Galkin, Masses of excited heavy baryons in the relativistic quark model. Phys. Lett. B 659, 612–620 (2008). https://doi.org/10.1016/j.physletb.2007.11.037. arXiv:0705.2957 [hep-ph]

    Article  ADS  Google Scholar 

  17. D. Ebert, R.N. Faustov, V.O. Galkin, Mass spectra and Regge trajectories of light mesons in the relativistic quark model. Phys. Rev. D 79, 114029 (2009). https://doi.org/10.1103/PhysRevD.79.114029. arXiv:0903.5183 [hep-ph]

    Article  ADS  Google Scholar 

  18. J. Vijande, A. Valcarce, N. Barnea, Exotic meson-meson molecules and compact four-quark states. Phys. Rev. D 79, 074010 (2009). https://doi.org/10.1103/PhysRevD.79.074010. arXiv:0903.2949 [hep-ph]

    Article  ADS  Google Scholar 

  19. Y.-R. Liu, H.-X. Chen, W. Chen, X. Liu, S.-L. Zhu, Pentaquark and Tetraquark states. Prog. Part. Nucl. Phys. 107, 237–320 (2019). https://doi.org/10.1016/j.ppnp.2019.04.003. arXiv:1903.11976 [hep-ph]

    Article  ADS  Google Scholar 

  20. N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C.-P. Shen, C.E. Thomas, A. Vairo, C.-Z. Yuan, The \(XYZ\) states: experimental and theoretical status and perspectives. Phys. Rept. 873, 1–154 (2020). https://doi.org/10.1016/j.physrep.2020.05.001. arXiv:1907.07583 [hep-ex]

    Article  ADS  Google Scholar 

  21. R.L. Workman et al., Review of particle physics. PTEP 2022, 83–91 (2022). https://doi.org/10.1093/ptep/ptac097

    Article  Google Scholar 

  22. H. Suganuma, In: Tanihata, I., Toki, H., Kajino, T. (eds.) Quantum Chromodynamics, Quark Confinement, and Chiral Symmetry Breaking: A Bridge Between Elementary Particle Physics and Nuclear Physics, pp. 1–48 (2023). https://doi.org/10.1007/978-981-15-8818-1_22-1

  23. V.A. Miransky, On the quark effective mass in QCD. Sov. J. Nucl. Phys. 38, 280 (1983). (IN RUSSIAN)

    Google Scholar 

  24. K. Higashijima, Dynamical chiral symmetry breaking. Phys. Rev. D 29, 1228 (1984). https://doi.org/10.1103/PhysRevD.29.1228

    Article  ADS  Google Scholar 

  25. J.I. Skullerud, A.G. Williams, Quark propagator in Landau gauge. Phys. Rev. D 63, 054508 (2001). https://doi.org/10.1103/PhysRevD.63.054508. arXiv:hep-lat/0007028

    Article  ADS  Google Scholar 

  26. J. Skullerud, D.B. Leinweber, A.G. Williams, Nonperturbative improvement and tree level correction of the quark propagator. Phys. Rev. D 64, 074508 (2001). https://doi.org/10.1103/PhysRevD.64.074508. arXiv:hep-lat/0102013

    Article  ADS  Google Scholar 

  27. P.O. Bowman, U.M. Heller, A.G. Williams, Lattice quark propagator with staggered quarks in Landau and Laplacian gauges. Phys. Rev. D 66, 014505 (2002). https://doi.org/10.1103/PhysRevD.66.014505. arXiv:hep-lat/0203001

    Article  ADS  Google Scholar 

  28. F.D.R. Bonnet, P.O. Bowman, D.B. Leinweber, A.G. Williams, J.-B. Zhang, Overlap quark propagator in Landau gauge. Phys. Rev. D 65, 114503 (2002). https://doi.org/10.1103/PhysRevD.65.114503. arXiv:hep-lat/0202003

    Article  ADS  Google Scholar 

  29. J.B. Zhang, P.O. Bowman, D.B. Leinweber, A.G. Williams, F.D.R. Bonnet, Scaling behavior of the overlap quark propagator in Landau gauge. Phys. Rev. D 70, 034505 (2004). https://doi.org/10.1103/PhysRevD.70.034505. arXiv:hep-lat/0301018

    Article  ADS  Google Scholar 

  30. P.O. Bowman, U.M. Heller, D.B. Leinweber, M.B. Parappilly, A.G. Williams, Unquenched gluon propagator in Landau gauge. Phys. Rev. D 70, 034509 (2004). https://doi.org/10.1103/PhysRevD.70.034509. arXiv:hep-lat/0402032

    Article  ADS  Google Scholar 

  31. A.P. Szczepaniak, E.S. Swanson, Coulomb gauge QCD, confinement, and the constituent representation. Phys. Rev. D 65, 025012 (2001). https://doi.org/10.1103/PhysRevD.65.025012. arXiv:hep-ph/0107078

    Article  ADS  Google Scholar 

  32. G. Hooft, Topology of the Gauge condition and new confinement phases in nonabelian Gauge theories. Nucl. Phys. B 190, 455–478 (1981). https://doi.org/10.1016/0550-3213(81)90442-9

    Article  ADS  MathSciNet  Google Scholar 

  33. A.S. Kronfeld, G. Schierholz, U.J. Wiese, Topology and dynamics of the confinement mechanism. Nucl. Phys. B 293, 461–478 (1987). https://doi.org/10.1016/0550-3213(87)90080-0

    Article  ADS  Google Scholar 

  34. A.S. Kronfeld, M.L. Laursen, G. Schierholz, U.J. Wiese, Monopole condensation and color confinement. Phys. Lett. B 198, 516–520 (1987). https://doi.org/10.1016/0370-2693(87)90910-5

    Article  ADS  Google Scholar 

  35. L. Del Debbio, M. Faber, J. Greensite, S. Olejnik, Center dominance and Z(2) vortices in SU(2) lattice gauge theory. Phys. Rev. D 55, 2298–2306 (1997). https://doi.org/10.1103/PhysRevD.55.2298. arXiv:hep-lat/9610005

    Article  ADS  Google Scholar 

  36. L. Del Debbio, M. Faber, J. Giedt, J. Greensite, S. Olejnik, Detection of center vortices in the lattice Yang–Mills vacuum. Phys. Rev. D 58, 094501 (1998). https://doi.org/10.1103/PhysRevD.58.094501. arXiv:hep-lat/9801027

    Article  ADS  Google Scholar 

  37. K. Huang, Quarks, Leptons and Gauge Fields, (1982)

  38. T. Iritani, H. Suganuma, Lattice QCD analysis for Faddeev–Popov eigenmodes in terms of gluonic momentum components in the Coulomb gauge. Phys. Rev. D 86, 074034 (2012). https://doi.org/10.1103/PhysRevD.86.074034. arXiv:1204.6591 [hep-lat]

    Article  ADS  Google Scholar 

  39. V.N. Gribov, Quantization of nonabelian Gauge theories. Nucl. Phys. B 139, 1 (1978). https://doi.org/10.1016/0550-3213(78)90175-X

    Article  ADS  Google Scholar 

  40. D. Zwanziger, Lattice Coulomb Hamiltonian and static color Coulomb field. Nucl. Phys. B 485, 185–240 (1997). https://doi.org/10.1016/S0550-3213(96)00566-4. arXiv:hep-th/9603203

    Article  ADS  Google Scholar 

  41. D. Zwanziger, Renormalization in the Coulomb gauge and order parameter for confinement in QCD. Nucl. Phys. B 518, 237–272 (1998). https://doi.org/10.1016/S0550-3213(98)00031-5

    Article  ADS  Google Scholar 

  42. D. Zwanziger, No confinement without Coulomb confinement. Phys. Rev. Lett. 90, 102001 (2003). https://doi.org/10.1103/PhysRevLett.90.102001. arXiv:hep-lat/0209105

    Article  ADS  Google Scholar 

  43. J. Greensite, C.B. Thorn, Gluon chain model of the confining force. JHEP 02, 014 (2002). https://doi.org/10.1088/1126-6708/2002/02/014. arXiv:hep-ph/0112326

    Article  ADS  Google Scholar 

  44. G. Hooft, Perturbative confinement. Nucl. Phys. B Proc. Suppl. 121, 333–340 (2003). https://doi.org/10.1016/S0920-5632(03)01872-3. arXiv:hep-th/0207179

    Article  ADS  Google Scholar 

  45. H.J. Rothe, Lattice Gauge Theories : An Introduction, vol. 43, 4th edn. (World Scientific Publishing Company, Singapore, 2012). https://doi.org/10.1142/8229

    Book  Google Scholar 

  46. T. Iritani, H. Suganuma, Instantaneous interquark potential in generalized Landau Gauge in SU(3) lattice QCD: A linkage between the Landau and the Coulomb Gauges. Phys. Rev. D 83, 054502 (2011). https://doi.org/10.1103/PhysRevD.83.054502. arXiv:1102.0920 [hep-lat]

    Article  ADS  Google Scholar 

  47. M. Luscher, S. Sint, R. Sommer, P. Weisz, U. Wolff, Nonperturbative O(a) improvement of lattice QCD. Nucl. Phys. B 491, 323–343 (1997). https://doi.org/10.1016/S0550-3213(97)00080-1. arXiv:hep-lat/9609035

    Article  ADS  Google Scholar 

  48. S. Aoki, R. Burkhalter, M. Fukugita, S. Hashimoto, K.-I. Ishikawa, N. Ishizuka, Y. Iwasaki, K. Kanaya, T. Kaneko, Y. Kuramashi, M. Okawa, T. Onogi, N. Tsutsui, A. Ukawa, N. Yamada, T. Yoshié, Light hadron spectroscopy with two flavors of O(a) improved dynamical quarks. Phys. Rev. D 68, 054502 (2003). https://doi.org/10.1103/PhysRevD.68.054502. arXiv:hep-lat/0212039

    Article  ADS  Google Scholar 

  49. K. Ishikawa, M. Teper, G. Schierholz, The Glueball mass spectrum in QCD: first results of a lattice Monte Carlo calculation. Phys. Lett. B 110, 399–405 (1982). (10.1016/0370-2693(82)91281-3)

    Article  ADS  Google Scholar 

  50. V. Hernandez, J.E. Roman, V. Vidal, SLEPc: A scalable and flexible toolkit for the solution of eigenvalue problems. ACM Trans. Math. Software 31(3), 351–362 (2005)

    Article  MathSciNet  Google Scholar 

  51. A. Yamamoto, H. Suganuma, Lattice analysis for the energy scale of QCD phenomena. Phys. Rev. Lett. 101, 241601 (2008). https://doi.org/10.1103/PhysRevLett.101.241601. arXiv:0808.1120 [hep-lat]

    Article  ADS  Google Scholar 

  52. A. Yamamoto, H. Suganuma, Relevant energy scale of color confinement from lattice QCD. Phys. Rev. D 79, 054504 (2009). https://doi.org/10.1103/PhysRevD.79.054504. arXiv:0811.3845 [hep-lat]

    Article  ADS  Google Scholar 

  53. M. Teper, An improved method for lattice Glueball calculations. Phys. Lett. B 183, 345 (1987). https://doi.org/10.1016/0370-2693(87)90976-2

  54. S. Ueda, S. Aoki, T. Aoyama, K. Kanaya, H. Matsufuru, S. Motoki, Y. Namekawa, H. Nemura, Y. Taniguchi, N. Ukita, Development of an object oriented lattice QCD code ‘Bridge++’. J. Phys. Conf. Ser. 523, 012046 (2014). https://doi.org/10.1088/1742-6596/523/1/012046

    Article  Google Scholar 

Download references

Acknowledgements

H.O. was supported by a Grant-in-Aid for JSPS Fellows (Grant No.21J20089). H.S. was supported by a Grants-in-Aid for Scientific Research [19K03869] from Japan Society for the Promotion of Science. This work was in part based on Bridge++ code [54]. We have used SLEPc [50] to solve eigenvalue problems for the Faddeev–Popov operator. The numerical simulations have been carried out on Yukawa-21 at Yukawa Institute for Theoretical Physics, Kyoto University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroki Ohata.

Additional information

Communicated by Carsten Urbach.

hopping parameters

hopping parameters

The hopping parameters used in hadron mass measurements under the eigenmode projection remaining low/high-lying FP modes are listed in Tables 3 and 4, respectively. We roughly tuned them to cover the range of \(m_{\pi } / m_{\rho } = 0.80 - 0.60\). The resulting \(m_{\pi } / m_{\rho }\) are also listed.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ohata, H., Suganuma, H. Remnants of quark model in lattice QCD simulation in the Coulomb gauge. Eur. Phys. J. A 60, 97 (2024). https://doi.org/10.1140/epja/s10050-024-01327-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01327-1

Navigation