Skip to main content
Log in

Numerically computing finite temperature loop integrals using pySecDec

  • Special Article - New Tools and Techniques
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

Finite-temperature quantum field theory provides the foundation for many important phenomena in the Standard Model and extensions, including phase transitions, baryogenesis, and gravitational waves. Methods are developed to enable application of pySecDec (a Python-language-based package designed for numerical calculation of dimensionally-regulated loop integrals) to numerically evaluate finite-temperature loop integrals in the imaginary time (Matsubara) formalism. These methods consist of two main elements: an inverse Wick rotation that converts a finite-temperature loop integral into a form applicable to pySecDec, and asymptotic techniques to regulate and accelerate convergence of the Matsubara frequency summations. Numerical pySecDec evaluation of finite-temperature, two-point and three-point, one-loop topologies for scalar fields is used to illustrate and validate these new methodologies. Advantages of these finite-temperature pySecDec numerical methods are illustrated by the inclusion of multiple mass and external momentum scales.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data Availability Statement

Data will be made available on reasonable request. [Author’s comment: The datasets generated during the current study are available from the corresponding author on reasonable request].

Code Availability Statement

Code/software will be made available on reasonable request. [Author’s comment: The code generated during during the current study is available from the corresponding author on reasonable request].

References

  1. A. Das, Finite temperature field theory (World Scientific, 1997)

  2. M. Laine, A. Vuorinen, Basics of Thermal Field Theory, Lect. Notes Phys. 925 (Springer, 2016). arXiv:1701.01554 [hep-ph]

  3. J.I. Kaputsa, C. Gale, Finite-temperature field theory: principles and applications (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  4. A. Ayala, C.A. Dominguez, M. Loewe, Adv. High Energy Phys. 2017, 9291623 (2017). arXiv:1608.04284 [hep-ph]

  5. G. Aarts, J. Aichelin, C. Allton, A. Athenodorou, D. Bachtis, C. Bonanno, N. Brambilla, E. Bratkovskaya, M. Bruno, M. Caselle et al., Prog. Part. Nucl. Phys. 133, 104070 (2023). arXiv:2301.04382 [hep-lat]

    Article  Google Scholar 

  6. M. Quiros. arXiv:hep-ph/9901312 [hep-ph]

  7. D. Croon. arXiv:2307.00068 [hep-ph]

  8. P. Athron, C. Balázs, A. Fowlie, L. Morris, L. Wu. arXiv:2305.02357 [hep-ph]

  9. M.E. Carrington, Phys. Rev. D 45, 2933–2944 (1992)

    Article  ADS  Google Scholar 

  10. J.R. Espinosa, M. Quiros, F. Zwirner, Phys. Lett. B 314, 206–216 (1993). arXiv:hep-ph/9212248 [hep-ph]

    Article  ADS  Google Scholar 

  11. J.R. Espinosa, T. Konstandin, F. Riva, Nucl. Phys. B 854, 592–630 (2012). arXiv:1107.5441 [hep-ph]

    Article  ADS  Google Scholar 

  12. W.C. Huang, F. Sannino, Z.W. Wang, Phys. Rev. D 102, 095025 (2020). arXiv:2004.02332 [hep-ph]

    Article  ADS  MathSciNet  Google Scholar 

  13. D.E. Morrissey, M.J. Ramsey-Musolf, New J. Phys. 14, 125003 (2012). arXiv:1206.2942 [hep-ph]

    Article  ADS  Google Scholar 

  14. C. Caprini, M. Chala, G.C. Dorsch, M. Hindmarsh, S.J. Huber, T. Konstandin, J. Kozaczuk, G. Nardini, J.M. No, K. Rummukainen et al., JCAP 03, 024 (2020). arXiv:1910.13125 [astro-ph.CO]

    Article  ADS  Google Scholar 

  15. T. Matsubara, Prog. Theor. Phys. 14, 351–378 (1955)

    Article  ADS  Google Scholar 

  16. S. Borowka, G. Heinrich, S. Jahn, S.P. Jones, M. Kerner, J. Schlenk, T. Zirke, Comput. Phys. Commun. 222, 313–326 (2018). arXiv:1703.09692 [hep-ph]

    Article  ADS  Google Scholar 

  17. G. Heinrich, S.P. Jones, M. Kerner, V. Magerya, A. Olsson, J. Schlenk, Comput. Phys. Commun. 295, 108956 (2024). arXiv:2305.19768 [hep-ph]

    Article  Google Scholar 

  18. G. Heinrich, Int. J. Mod. Phys. A 23, 1457–1486 (2008). arXiv:0803.4177 [hep-ph]

    Article  ADS  Google Scholar 

  19. J.A.M. Vermaseren. arXiv:math-ph/0010025 [math-ph]

  20. J. Kuipers, T. Ueda, J.A.M. Vermaseren, Comput. Phys. Commun. 189, 1–19 (2015). https://doi.org/10.1016/j.cpc.2014.08.008. arXiv:1310.7007 [cs.SC]

    Article  ADS  Google Scholar 

  21. B. Ruijl, T. Ueda, J. Vermaseren. arXiv:1707.06453 [hep-ph]

  22. M. Galassi, J. Davies, J. Theiler, B. Gough, G. Jungman, P. Alken, M. Booth, F. Rossi, GNU Scientific Library Reference Manual, 3 ed. (Network Theory Ltd.) (2009)

  23. T. Hahn, Comput. Phys. Commun. 168, 78–95 (2005). arXiv:hep-ph/0404043 [hep-ph]

    Article  ADS  Google Scholar 

  24. T. Hahn, J. Phys. Conf. Ser. 608, 012066 (2015). arXiv:1408.6373 [physics.comp-ph]

    Article  Google Scholar 

  25. S. Esau, D. Harnett, Eur. Phys. J. A 55, 31 (2019). arXiv:1806.00157 [hep-ph]

    Article  ADS  Google Scholar 

  26. K. Ray, D. Harnett, T.G. Steele, Phys. Rev. D 108, 034001 (2023). arXiv:2211.00155 [hep-ph]

    Article  ADS  Google Scholar 

  27. P. Pascual, R. Tarrach, QCD: Renormalization for the Practitioner. In: Lecture Notes in Physics v. 194 (Springer) (1984)

Download references

Acknowledgements

TGS and DH are grateful for research funding from the Natural Sciences and Engineering Research Council of Canada (NSERC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. G. Steele.

Additional information

Communicated by Jean-Philippe Lansberg.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harnett, D., Li, S. & Steele, T.G. Numerically computing finite temperature loop integrals using pySecDec. Eur. Phys. J. A 60, 107 (2024). https://doi.org/10.1140/epja/s10050-024-01323-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01323-5

Navigation