Skip to main content
Log in

Performance study of the hyperon global polarization measurements with MPD at NICA

  • Regular Article - Experimental Physics
  • Published:
The European Physical Journal A Aims and scope Submit manuscript

Abstract

One of the goals of the future Multi-Purpose Detector (MPD) is to investigate vortical structure of matter by studying polarization observables in heavy-ion collisions in the energy range of several GeV per nucleon. We present here the performance study of global polarization of \(\varLambda \) hyperons within the framework of the MPD experiment at Nuclotron-based Ion Collider fAcility (NICA) to analyze the sensitivity of the detector to these observables during the initial stage of the experimental setup. The study has been performed via Monte Carlo simulation made for the collisions of Bi+Bi at \(\sqrt{s_{\textrm{NN}}} = 9.02\) GeV using Parton-Hadron-String Dynamics (PHSD) model. Full chain of spin direction transfer from the model to MC simulation has been implemented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability Statement

Data will be made available on reasonable request. [Author’s comment: The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.]

References

  1. E.V. Shuryak, Quantum Chromodynamics and the Theory of Superdense Matter. Phys. Rept. 61, 71–158 (1980). https://doi.org/10.1016/0370-1573(80)90105-2

    Article  ADS  MathSciNet  Google Scholar 

  2. J. Adams et al., Experimental and theoretical challenges in the search for the quark gluon plasma: The STAR Collaboration’s critical assessment of the evidence from RHIC collisions. Nucl. Phys. A 757, 102–183 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.085. arXiv:nuclex/0501009

    Article  ADS  Google Scholar 

  3. K. Adcox et al., Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX collaboration. Nucl. Phys. A 757, 184–283 (2005). https://doi.org/10.1016/j.nuclphysa.2005.03.086. arXiv:nucl-ex/0410003

  4. F. Becattini, F. Piccinini, J. Rizzo, Angular momentum conservation in heavy ion collisions at very high energy. In: Phys. Rev. C 77, 024906 (2008). https://doi.org/10.1103/PhysRevC.77.024906. arXiv:0711.1253 [nucl-th]

    Article  ADS  Google Scholar 

  5. Sergei A. Voloshin.“Polarized secondary particles in unpolarized high energy hadron-hadron collisions?” In: (Oct. 2004). arXiv:nucl-th/0410089

  6. Zuo-Tang Liang, Xin-NianWang.“Spin alignment of vector mesons in non-central A+A collisions”. In: Phys. Lett. B 629 (2005), pp.20–26. https://doi.org/10.1016/j.physletb.2005.09.060. arXiv:nucl-th/0411101

  7. L. Adamczyk et al., Global \(\Lambda \) hyperon polarization in nuclear collisions: evidence for the most vortical fluid. Nature 548, 62–65 (2017). https://doi.org/10.1038/nature23004. arXiv:1701.06657 [nucl-ex]

    Article  ADS  Google Scholar 

  8. J. Adam et al., Global polarization of \(\Lambda \) hyperons in Au+Au collisions at \(\sqrt{s_{_{NN}}}\) = 200 GeV. Phys. Rev. C 98, 014910 (2018). https://doi.org/10.1103/PhysRevC.98.014910. arXiv:1805.04400 [nucl-ex]

    Article  ADS  Google Scholar 

  9. M. S. Abdallah et al., Global \(\Lambda \)-hyperon polarization in Au+Au collisions at \(\sqrt{s_{NN}}\)=3 GeV’. In: Phys. Rev. C 104(6), L061901 https://doi.org/10.1103/PhysRevC.104.L061901. arXiv:2108.00044 [nucl-ex]

  10. R. Abou Yassine et al.“Measurement of global polarization of \(\Lambda \) hyperons in few-GeV heavy-ion collisions”. In: Phys. Lett. B 835 (2022), p. 137506. https://doi.org/10.1016/j.physletb.2022.137506. arXiv:2207.05160 [nucl-ex]

  11. “Global polarization of \(\Lambda \) and \({\bar{\Lambda }}\) hyperons in Au+Au collisions at \(\sqrt{s_{NN}}=19.6\) and \(27\) GeV” In: (May 2023). arXiv:2305.08705 [nucl-ex]

  12. Shreyasi Acharya et al. ‘Global polarization of \(\Lambda \bar{\Lambda }\) hyperons in Pb-Pb collisions at \(\sqrt{s_{NN}}\) = 2.76 and 5.02 TeV”. In: Phys. Rev. C 101.4 (2020). [Erratum: Phys.Rev.C 105, 029902 (2022)], p. 044611. https://doi.org/10.1103/PhysRevC.101.044611. arXiv:1909.01281 [nucl-ex]

  13. Xian-Gai Deng et al.“Vorticity in low-energy heavyion collisions”. In: Phys. Rev. C 101.6 (2020), p. 064908. https://doi.org/10.1103/PhysRevC.101.064908. arXiv:2001.01371 [nucl-th]

  14. Yu B. Ivanov.“Global \(\Lambda \)and the role of polarization in moderately relativistic nuclear collisions”. In: Phys. Rev. C 103.3 (2021), p. L031903. https://doi.org/10.1103/PhysRevC.103.L031903. arXiv:2012.07597 [nucl-th]

  15. Yuri B. Ivanov and Alexei A. Soldatov.“\(\Lambda \) Polarization and Vortex Rings in Heavy-Ion Collisions at NICA Energies”. In: Particles 6.1 (2023), pp. 245–261. https://doi.org/10.3390/particles6010014

  16. V. Voronyuk, E. E. Kolomeitsev, and N. S. Tsegelnik. “Hyperon global polarization in heavy-ion collisions at NICA energies. Feed-down effects and the role of \(\Sigma ^0\) hyperons”. In: (May 2023). arXiv:2305.10792 [nucl-th]

  17. Yu Guo et al. “Hyperon polarization from the vortical fluid in low-energy nuclear collisions”. In: Phys. Rev. C 104.4 (2021), p. L041902. https://doi.org/10.1103/PhysRevC.104.L041902. arXiv:2105.13481 [nucl-th]

  18. Alejandro Ayala et al. “An Improved Core-Corona Model for \(\Lambda \) and \({{\overline{\Lambda }}}\) Polarization in Relativistic Heavy-Ion Collisions”. In: Particles 6.1 (2023), pp. 405–415. https://doi.org/10.3390/particles6010022

  19. F. Becattini and L. Tinti. “The Ideal relativistic rotating gas as a perfect fluid with spin”. In: Annals Phys. 325 (2010), pp. 1566–1594. https://doi.org/10.1016/j.aop.2010.03.007. arXiv:0911.0864 [gr-qc]

  20. F. Becattini et al. “Relativistic distribution function for particles with spin at local thermodynamical equilibrium”. In: Annals Phys. 338 (2013), pp. 32–49. https://doi.org/10.1016/j.aop.2013.07.004. arXiv:1303.3431 [nucl-th]

  21. Ren-hong Fang et al. “Polarization of massive fermions in a vortical fluid”. In: Phys. Rev. C 94.2 (2016), p. 024904. https://doi.org/10.1103/PhysRevC.94.024904. arXiv:1604.04036 [nucl-th]

  22. F. Becattini et al. “Global hyperon polarization at local thermodynamic equilibrium with vorticity, magnetic field and feed-down”. In: Phys. Rev. C 95.5 (2017), p. 054902. https://doi.org/10.1103/PhysRevC.95.054902. arXiv:1610.02506 [nucl-th]

  23. Oleg Rogachevsky, Alexander Sorin, and Oleg Teryaev. “Chiral vortaic effect and neutron asymmetries in heavy-ion collisions”. In: Phys. Rev. C 82 (2010), p. 054910. https://doi.org/10.1103/PhysRevC.82.054910. arXiv:1006.1331 [hep-ph]

  24. Jian-Hua Gao et al. “Chiral Anomaly and Local Polarization Effect from Quantum Kinetic Approach”. In: Phys. Rev. Lett. 109 (2012), p. 232301. https://doi.org/10.1103/PhysRevLett.109.232301. arXiv:1203.0725 [hep-ph]

  25. Alexander Sorin and Oleg Teryaev. “Axial anomaly and energy dependence of hyperon polarization in Heavy-Ion Collisions”. In: Phys. Rev. C 95.1 (2017), p. 011902. https://doi.org/10.1103/PhysRevC.95.011902. arXiv:1606.08398 [nucl-th]

  26. E. Nazarova et al. “Monte Carlo Study of \(\Lambda \) Polarization at MPD”. In: Phys. Part. Nucl. Lett. 18.4 (2021), pp. 429–438. https://doi.org/10.1134/S1547477121040142

  27. V. Abgaryan et al. “Status and initial physics performance studies of the MPD experiment at NICA”. In: Eur. Phys. J. A 58.7 (2022), p. 140. https://doi.org/10.1140/epja/s10050-022-00750-6. arXiv:2202.08970 [physics.ins-det]

  28. W. Cassing and E. L. Bratkovskaya.“Parton transport and hadronization from the dynamical quasiparticle point of view”. In: Phys. Rev. C 78 (2008), p. 034919. https://doi.org/10.1103/PhysRevC.78.034919. arXiv:0808.0022 [hep-ph]

  29. W. Cassing and E. L. Bratkovskaya.“Parton-Hadron- String Dynamics: an off-shell transport approach for relativistic energies”. In: Nucl. Phys. A 831 (2009), pp. 215.242. https://doi.org/10.1016/j.nuclphysa.2009.09.007. arXiv:0907.5331 [nucl-th]

  30. E. L. Bratkovskaya et al.“Parton-Hadron-String Dynamics at Relativistic Collider Energies”. In: Nucl. Phys. A 856 (2011), pp. 162.182. https://doi.org/10.1016/j.nuclphysa.2011.03.003. arXiv:1101.5793 [nucl-th]

  31. N. S. Tsegelnik, E. E. Kolomeitsev, and V. Voronyuk. “Helicity and vorticity in heavy-ion collisions at energies available at the JINR Nuclotron-based Ion Collider facility”. In: Phys. Rev. C 107.3 (2023), p. 034906. https://doi.org/10.1103/PhysRevC.107.034906. arXiv:2211.09219 [nucl-th]

  32. Nikita Tsegelnik, Evgeni Kolomeitsev, and Vadym Voronyuk.“\(\Lambda \) and \({\overline{\Lambda }}\) Freeze-Out Distributions and Global Polarizations in Au+Au Collisions”. In: Particles 6.1 (2023), pp. 373-384. https://doi.org/10.3390/particles6010019. arXiv:2304.10998 [nucl-th]

  33. T. Anticic et al.“System-size dependence of Lambda and Xi production in nucleus-nucleus collisions at 40A and 158A-GeV measured at the CERN Super Proton Synchrotron”. In: Phys. Rev. C 80 (2009), p. 034906. https://doi.org/10.1103/PhysRevC.80.034906. arXiv:0906.0469 [nucl-ex]

  34. S. Agostinelli et al.“GEANT4.a simulation toolkit”. In: Nucl. Instrum. Meth. A 506 (2003), pp. 250–303. https://doi.org/10.1016/S0168-9002(03)01368-8

  35. O. V. Rogachevsky et al.“Software Development and Computing for the MPD Experiment”. In: Phys. Part. Nucl. 52.4 (2021), pp. 817–820. https://doi.org/10.1134/S1063779621040523

  36. R. L.Workman et al.“Review of Particle Physics”. In: PTEP 2022 (2022), p. 083C01. https://doi.org/10.1093/ptep/ptac097

  37. B. I. Abelev et al.“Global polarization measurement in Au+Au collisions”. In: Phys. Rev. C 76 (2007). [Erratum: Phys.Rev.C 95, 039906 (2017)], p. 024915. https://doi.org/10.1103/PhysRevC.76.024915. arXiv:0705.1691 [nucl-ex]

  38. Betty Abelev et al.“Centrality determination of Pb-Pb collisions at \(\sqrt{s_{NN}}\)= 2.76 TeV with ALICE”. In: Phys. Rev. C 88.4 (2013), p. 044909. https://doi.org/10.1103/PhysRevC.88.044909. arXiv:1301.4361 [nucl-ex]

  39. E. Zherebtsova et al.“Procedure for event characterization in Pb-Pb collisions at 40AGeV in the NA49 experiment at the CERN SPS”. In: EPJ Web Conf. 182 (2018). Ed. by Y. Aharonov, L. Bravina, and S. Kabana, p. 02132. https://doi.org/10.1051/epjconf/201818202132

  40. L. Adamczyk et al.“Inclusive charged hadron elliptic flow in Au + Au collisions at \(\sqrt{s_{NN}}\)= 7.7 - 39 GeV”. In: Phys. Rev. C 86 (2012), p. 054908. https://doi.org/10.1103/PhysRevC.86.054908. arXiv:1206.5528 [nucl-ex]

  41. V. Klochkov and I. Selyuzhenkov.“Centrality Determination in Heavy-ion Collisions with CBM”. In: Acta Phys. Polon. Supp. 10 (2017), p. 919. https://doi.org/10.5506/APhysPolBSupp.10.919

  42. Petr Parfenov et al.“Relating Charged Particle Multiplicity to Impact Parameter in Heavy-Ion Collisions at NICA Energies”. In: Particles 4.2 (2021), pp. 275–287. https://doi.org/10.3390/particles4020024

  43. Dmitri Kharzeev and Marzia Nardi.“Hadron production in nuclear collisions at RHIC and high density QCD”. In: Phys. Lett. B 507 (2001), pp. 121–128. https://doi.org/10.1016/S0370-2693(01)00457-9. arXiv:nucl-th/0012025

  44. M. Baznat et al.“Monte-Carlo Generator of Heavy Ion Collisions DCM-SMM”. In: Phys. Part. Nucl. Lett. 17.3 (2020), pp. 303–324. https://doi.org/10.1134/S1547477120030024. arXiv:1912.09277 [nucl-th]

  45. Jean-Yves Ollitrault.“Anisotropy as a signature of transverse collective flow”. In: Phys. Rev. D 46 (1992), pp. 229–245. https://doi.org/10.1103/PhysRevD.46.229

  46. Jean-Yves Ollitrault.“Determination of the reaction plane in ultrarelativistic nuclear collisions”. In: Phys. Rev. D 48 (1993), pp. 1132–1139. https://doi.org/10.1103/PhysRevD.48.1132. arXiv:hep-ph/9303247

  47. Arthur M. Poskanzer and S. A. Voloshin.“Methods for analyzing anisotropic flow in relativistic nuclear collisions”. In: Phys. Rev. C 58 (1998), pp. 1671–1678. https://doi.org/10.1103/PhysRevC.58.1671. arXiv:nucl-ex/9805001

  48. V. Kolesnikov et al.“Towards a Realistic Monte Carlo Simulation of the MPD Detector at NICA”. In: Phys. Part. Nucl. Lett. 16.1 (2019), pp. 6–15. https://doi.org/10.1134/S1547477119010084

  49. J. Drnoyan et al.“Perspectives of Multistrange Hyperon Study at NICA/MPD from Realistic Monte Carlo Simulation”. In: Phys. Part. Nucl. Lett. 17.1 (2020), pp. 32–43. https://doi.org/10.1134/S1547477120010057

  50. Frederic Julian Kornas.“Global polarization of \(\Lambda \) hyperons as a probe for vortical effects in A+A collisions at HADES”. PhD thesis. Dortmund U., 2021. https://doi.org/10.26083/tuprints-00019763

  51. Kosuke Okubo.“Measurement of global polarization of \(\Lambda \) hyperons in Au+Au \(\sqrt{{\rm SNN}}\) = 7.2 GeV fixed target collisions at RHIC-STAR experiment”. In: EPJ Web Conf. 259 (2022), p. 06003. https://doi.org/10.1051/epjconf/202225906003. arXiv:2108.10012 [nucl-ex]

Download references

Acknowledgements

The work of P. Parfenov and A. Taranenko was supported by the Ministry of Science and Higher Education of the Russian Federation, Project “New Phenomena in Particle Physics and the Early Universe” No FSWU-2023-0073. We thank Evgeni Kolomeitsev for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizaveta Nazarova.

Ethics declarations

Code Availability Statement

This manuscript has associated code/software in a data repository. [Author’s comment: The code/software generated during and/or analysed during the current study is available in the MPDROOT framework repository: https://git.jinr.ru/nica/mpdroot/-/tree/dev/physics/globalPolarization.]

Additional information

Communicated by Carlos Munoz Camacho.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nazarova, E., Kolesnikov, V., Parfenov, P. et al. Performance study of the hyperon global polarization measurements with MPD at NICA. Eur. Phys. J. A 60, 85 (2024). https://doi.org/10.1140/epja/s10050-024-01308-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epja/s10050-024-01308-4

Navigation